Background/objectives: This study aims to assess the effects of combined hormonal contraceptives (CHCs) on bone metabolism markers. It primarily measures osteocalcin and additionally examines other bone health markers, seeking to determine their responses to estrogen-progestogen treatments.

Methods: This study involved a comprehensive evaluation of the pertinent literature and a meta-analysis explicitly conducted on data describing women of reproductive age. The analysis encompassed accessible papers ranging to December 2024 (i.e., those listed in PubMed/Medline, Embase, Scopus, the Cochrane Database, International Clinical Trials Registry, and ClinicalTrials.gov). We examined published randomized controlled trials (RCTs) and prospective studies. The quality of the studies was assessed using the Cochrane tool for RCTs and the Newcastle-Ottawa Scale for prospective studies. The selected indicators for primary and secondary outcomes were ascertained by standardized mean change (SMC), displaying the difference between conditions before and after treatment. Trends were evaluated using meta-regressions.

Results: Ultimately, 34 articles out of 1924 identified items met the inclusion criteria, covering 33 unique studies. In EE/E4 combinations, osteocalcin dropped significantly (SMC -0.54 (CI.95 -0.64/-0.43) and -0.43 (CI.95 -0.76/-0.10)). Similar effects were observed for other bone-formation and reabsorption markers, with less significant reductions observed in E2-containing CHC (e.g., alkaline phosphatase (bone) EE combinations, SMC -0.39 (CI.95 -0.67/-0.11); P1NP E2 combination, 0.12 (CI.95 -0.10/0.33); and EE combinations, -0.55 (CI.95 -0.83/-0.26)). The reduction patterns also exhibited differences according to the women's age (e.g., osteocalcin in EE combinations ≤21, SMC -0.63 (CI.95 -0.77/-0.49) and >21, SMC -0.42 (CI.95 -0.61/-0.24); alkaline phosphatase (bone) EE combinations ≤21, SMC -0.55 (CI.95 -0.86/-0.24) and >21, SMC -0.06 (CI.95 -0.47/0.35)). This analysis found that CHC maintains or reduces bone turnover in childbearing women, with effects varying by age and hormone combination. Moreover, bone-formation and reabsorption markers correlated positively to pro-androgenic progestins ( < 0.05). Thus, estrogen-progestogen combinations reduce bone turnover less when weak estrogens and a pro-androgenic or neutral progestin are present.

Conclusions: This study found that CHCs reduce bone turnover, with natural estrogens and androgenic progestins appearing to be more beneficial than EE and anti-androgenic types. These findings would potentially influence decisions relevant to CHC prescriptions during a woman's reproductive phases, emphasizing the need for additional research to tailor CHC usage to bone health.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph18010061DOI Listing

Publication Analysis

Top Keywords

bone turnover
12
bone
9
ci95
9
bone metabolism
8
bone health
8
prospective studies
8
bone-formation reabsorption
8
reabsorption markers
8
alkaline phosphatase
8
phosphatase bone
8

Similar Publications

In 2017, Kidney Disease: Improving Global Outcomes (KDIGO) published a Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Since then, new lines of evidence have been published related to evaluating disordered mineral metabolism and bone quality and turnover, identifying and inhibiting vascular calcification, targeting vitamin D levels, and regulating parathyroid hormone. For an in-depth consideration of the new insights, in October 2023, KDIGO held a Controversies Conference on CKD-MBD: Progress and Knowledge Gaps Toward Personalizing Care.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

ANXA2 promotes chondrocyte differentiation and fracture healing by regulating the phosphorylation of STAT3 and PI3K/AKT signaling pathways.

Cell Signal

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:

Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.

View Article and Find Full Text PDF

Osteoporosis is the most common bone metabolic unbalance, leading to fragility fractures, which are known to be associated with structural changes in the bone. Cortical bone accounts for 80 % of the skeleton mass and undergoes remodeling throughout life, leading to changes in its thickness and microstructure. Although many studies quantified the different cortical bone structures using CT techniques (3D), they are often realised on a small number of samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!