Background/objectives: This study aims to assess the effects of combined hormonal contraceptives (CHCs) on bone metabolism markers. It primarily measures osteocalcin and additionally examines other bone health markers, seeking to determine their responses to estrogen-progestogen treatments.
Methods: This study involved a comprehensive evaluation of the pertinent literature and a meta-analysis explicitly conducted on data describing women of reproductive age. The analysis encompassed accessible papers ranging to December 2024 (i.e., those listed in PubMed/Medline, Embase, Scopus, the Cochrane Database, International Clinical Trials Registry, and ClinicalTrials.gov). We examined published randomized controlled trials (RCTs) and prospective studies. The quality of the studies was assessed using the Cochrane tool for RCTs and the Newcastle-Ottawa Scale for prospective studies. The selected indicators for primary and secondary outcomes were ascertained by standardized mean change (SMC), displaying the difference between conditions before and after treatment. Trends were evaluated using meta-regressions.
Results: Ultimately, 34 articles out of 1924 identified items met the inclusion criteria, covering 33 unique studies. In EE/E4 combinations, osteocalcin dropped significantly (SMC -0.54 (CI.95 -0.64/-0.43) and -0.43 (CI.95 -0.76/-0.10)). Similar effects were observed for other bone-formation and reabsorption markers, with less significant reductions observed in E2-containing CHC (e.g., alkaline phosphatase (bone) EE combinations, SMC -0.39 (CI.95 -0.67/-0.11); P1NP E2 combination, 0.12 (CI.95 -0.10/0.33); and EE combinations, -0.55 (CI.95 -0.83/-0.26)). The reduction patterns also exhibited differences according to the women's age (e.g., osteocalcin in EE combinations ≤21, SMC -0.63 (CI.95 -0.77/-0.49) and >21, SMC -0.42 (CI.95 -0.61/-0.24); alkaline phosphatase (bone) EE combinations ≤21, SMC -0.55 (CI.95 -0.86/-0.24) and >21, SMC -0.06 (CI.95 -0.47/0.35)). This analysis found that CHC maintains or reduces bone turnover in childbearing women, with effects varying by age and hormone combination. Moreover, bone-formation and reabsorption markers correlated positively to pro-androgenic progestins ( < 0.05). Thus, estrogen-progestogen combinations reduce bone turnover less when weak estrogens and a pro-androgenic or neutral progestin are present.
Conclusions: This study found that CHCs reduce bone turnover, with natural estrogens and androgenic progestins appearing to be more beneficial than EE and anti-androgenic types. These findings would potentially influence decisions relevant to CHC prescriptions during a woman's reproductive phases, emphasizing the need for additional research to tailor CHC usage to bone health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ph18010061 | DOI Listing |
Kidney Int
January 2025
Laboratório de Fisiopatologia Renal (LIM 16), Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil. Electronic address:
In 2017, Kidney Disease: Improving Global Outcomes (KDIGO) published a Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Since then, new lines of evidence have been published related to evaluating disordered mineral metabolism and bone quality and turnover, identifying and inhibiting vascular calcification, targeting vitamin D levels, and regulating parathyroid hormone. For an in-depth consideration of the new insights, in October 2023, KDIGO held a Controversies Conference on CKD-MBD: Progress and Knowledge Gaps Toward Personalizing Care.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFNat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFCell Signal
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:
Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.
View Article and Find Full Text PDFBone
January 2025
ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
Osteoporosis is the most common bone metabolic unbalance, leading to fragility fractures, which are known to be associated with structural changes in the bone. Cortical bone accounts for 80 % of the skeleton mass and undergoes remodeling throughout life, leading to changes in its thickness and microstructure. Although many studies quantified the different cortical bone structures using CT techniques (3D), they are often realised on a small number of samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!