Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available. This work reports on two compact sensor system designs, both reaching the FDA accuracy benchmark. Each design commonly comprises a mid-infrared QCL for emission, a multiple attenuation total reflection prism (MATR) for data acquisition, and a computer-controlled infrared detector for data analysis. The first design translates the comb-like signals into conventional spectra, and then data-mines the resultant spectra to yield blood glucose concentrations. When a pressure actuator is employed to press the patient's hypothenar against the MATR, the sensor accuracy is considered to reach the FDA accuracy benchmark. The second design abandons the data processing step of translating combs-to-spectra and directly data-mines the "first-hand" comb signal. Beyond increasing the measurement accuracy to the FDA accuracy benchmark, even without a pressure actuator, direct comb data-mining upgrades the sensor system with speed and data integrity, which can impact the healthcare of diabetic patients. Specifically, the sensor performance is validated with 492 glucose absorption scans in the time domain, each with 20 million datapoints measured from four subjects with glucose concentrations of 3.9-7.9 mM. The sensor data-mines 164 sets of critical singularity strengths, each comprising 4 critical singularity strengths directly from the 9840 million raw signal datapoints, and the 656 critical singularity strengths are subjected to a machine-learning regression model analysis, which yields 164 glucose concentrations. These concentrations are correlated with those measured with a standard finger-pricking glucometer. An accuracy of 99.6% is confirmed from the 164 measurements with errors not more than 15% from the reference of the standard glucometer.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25020587DOI Listing

Publication Analysis

Top Keywords

blood glucose
16
accuracy benchmark
16
fda accuracy
16
glucose concentrations
12
critical singularity
12
singularity strengths
12
glucose
9
quantum cascade
8
sensor
8
glucose sensor
8

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.

Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus is hyperglycemia in special populations (pregnant women), however gestational diabetes mellitus (GDM) not only affects maternal health, but also has profound effects on offspring health. The prevalence of gestational diabetes in my country is gradually increasing.

Objective: To study the application effect of self-transcendence nursing model in GDM patients.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!