The deformation monitoring of integrated truss structures (ITSs) is essential for ensuring the reliable performance of mounted equipment in complex space environments. Reconstruction methods based on local strain information have been proven effective, yet the identification faces significant challenges due to variable thermal-mechanical loads, interactions among structural components, and special boundary conditions. This paper proposes a deformation reconstruction strategy tailored for ITSs under combined thermal-mechanical load scenarios wherein deformations of both the primary truss structures and the attached panel systems are investigated. The proposed approach utilizes Ko displacement theory as the core algorithm, while the least squares optimization method is employed to determine the integration with unknown initial values during the reconstruction process. Validation is conducted through diverse load scenarios, and the reconstruction results are evaluated using errors based on the root mean square. The result demonstrates that the proposed method can reconstruct deformations of truss structures under both mechanical and thermal loads. Furthermore, the optimization-based approach achieves accurate reconstructed results in the case of panels with two-point fixed boundary conditions. This study provides an effective strategy for in-orbit deformation reconstruction, addressing challenges posed by complex loads and structural configurations.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25020558DOI Listing

Publication Analysis

Top Keywords

truss structures
16
deformation reconstruction
12
reconstruction strategy
8
integrated truss
8
thermal-mechanical load
8
boundary conditions
8
load scenarios
8
reconstruction
5
deformation
4
strategy integrated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!