Insufficient selectivity is a major constraint to the further development of metal oxide semiconductor (MOS) sensors for chemical warfare agents, and this paper proposed an improved scheme combining catalytic layer/gas-sensitive layer laminated structure with temperature dynamic modulation for the Mustard gas (HD) MOS sensor. Mustard gas simulant 2-Chloroethyl ethyl sulfide (2-CEES) was used as the target gas, (Pt + Pd + Rh)@AlO as the catalytic layer material, (Pt + Rh)@WO as the gas-sensitive layer material, the (Pt + Pd + Rh)@AlO/(Pt + Rh)@WO sensor was prepared, and the sensor was tested for 2-CEES and 12 battlefield environment simulation gases under temperature dynamic modulation. The results showed that the sensor only showed obvious characteristic peaks in the resistance response curves to HD under certain conditions (100-400 °C, the highest temperature was held for 1 s and the lowest temperature was held for 2 s), and its peak height reached 6.12, which was far higher than other gases, thus realizing the high selectivity of the MOS sensor to 2-CEES. Meanwhile, the sensor also showed good sensitivity, detection limits, response/recovery times, anti-interference, and stability, which further verified the feasibility of the improved scheme.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25020525DOI Listing

Publication Analysis

Top Keywords

mustard gas
12
temperature dynamic
12
dynamic modulation
12
metal oxide
8
oxide semiconductor
8
gas simulant
8
simulant 2-chloroethyl
8
2-chloroethyl ethyl
8
ethyl sulfide
8
laminated structure
8

Similar Publications

Insufficient selectivity is a major constraint to the further development of metal oxide semiconductor (MOS) sensors for chemical warfare agents, and this paper proposed an improved scheme combining catalytic layer/gas-sensitive layer laminated structure with temperature dynamic modulation for the Mustard gas (HD) MOS sensor. Mustard gas simulant 2-Chloroethyl ethyl sulfide (2-CEES) was used as the target gas, (Pt + Pd + Rh)@AlO as the catalytic layer material, (Pt + Rh)@WO as the gas-sensitive layer material, the (Pt + Pd + Rh)@AlO/(Pt + Rh)@WO sensor was prepared, and the sensor was tested for 2-CEES and 12 battlefield environment simulation gases under temperature dynamic modulation. The results showed that the sensor only showed obvious characteristic peaks in the resistance response curves to HD under certain conditions (100-400 °C, the highest temperature was held for 1 s and the lowest temperature was held for 2 s), and its peak height reached 6.

View Article and Find Full Text PDF

Introduction: Biomarkers play a crucial role across various fields by providing insights into biological responses to interventions. High-throughput gene expression profiling technologies facilitate the discovery of data-driven biomarkers through extensive datasets. This study focuses on identifying biomarkers in gene expression data related to chemical injuries by mustard gas, covering a spectrum from healthy individuals to severe injuries.

View Article and Find Full Text PDF

Activated carbon textile (C-Text) was chemically modified to incorporate oxygen- (C-Text-O), nitrogen- (C-Text-ON), and/or sulfur- (C-Text-OS) containing surface functional groups, aiming to enhance their reactive adsorption capacity. The modified textiles were evaluated for their ability to detoxify 2-choloroethyl ethyl sulfide (CEES) in both vapor and liquid phases, under dry and humid conditions. The maximum amount of water adsorbed was directly affected by the surface area (R = 0.

View Article and Find Full Text PDF

Clinical trials of drugs, procedures, and other therapies play a crucial role in advancing medical science by evaluating the safety, efficacy, and optimal use of medical interventions. The design and implementation of these trials have evolved significantly over time, reflecting advancements in medicine, ethics, and methodology. Early historical examples, such as King Nebuchadnezzar II's and his captives' dietary experiment and Ambroise Paré's treatment of gunshot wounds, laid some foundational principles of trial design.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!