Research on Sensitivity Improvement Methods for RTD Fluxgates Based on Feedback-Driven Stochastic Resonance with PSO.

Sensors (Basel)

College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.

Published: January 2025

AI Article Synopsis

Article Abstract

With the wide application of Residence Time Difference (RTD) fluxgate sensors in Unmanned Aerial Vehicle (UAV) aeromagnetic measurements, the requirements for their measurement accuracy are increasing. The core characteristics of the RTD fluxgate sensor limit its sensitivity; the high-permeability soft magnetic core is especially easily interfered with by the input noise. In this paper, based on the study of the excitation signal and input noise characteristics, the stochastic resonance is proposed to be realized by adding feedback by taking advantage of the high hysteresis loop rectangular ratio, low coercivity and bistability characteristics of the soft magnetic material core. Simulink is used to construct the sensor model of odd polynomial feedback control, and the Particle Swarm Optimization (PSO) algorithm is used to optimize the coefficients of the feedback function so that the sensor reaches a resonance state, thus reducing the noise interference and improving the sensitivity of the sensor. The simulation results show that optimizing the odd polynomial feedback coefficients with PSO enables the sensor to reach a resonance state, improving sensitivity by at least 23.5%, effectively enhancing sensor performance and laying a foundation for advancements in UAV aeromagnetic measurement technology.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25020520DOI Listing

Publication Analysis

Top Keywords

stochastic resonance
8
rtd fluxgate
8
uav aeromagnetic
8
soft magnetic
8
input noise
8
odd polynomial
8
polynomial feedback
8
resonance state
8
improving sensitivity
8
sensor
6

Similar Publications

Research on Sensitivity Improvement Methods for RTD Fluxgates Based on Feedback-Driven Stochastic Resonance with PSO.

Sensors (Basel)

January 2025

College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.

With the wide application of Residence Time Difference (RTD) fluxgate sensors in Unmanned Aerial Vehicle (UAV) aeromagnetic measurements, the requirements for their measurement accuracy are increasing. The core characteristics of the RTD fluxgate sensor limit its sensitivity; the high-permeability soft magnetic core is especially easily interfered with by the input noise. In this paper, based on the study of the excitation signal and input noise characteristics, the stochastic resonance is proposed to be realized by adding feedback by taking advantage of the high hysteresis loop rectangular ratio, low coercivity and bistability characteristics of the soft magnetic material core.

View Article and Find Full Text PDF

Inverse stochastic resonance in a two-dimensional airfoil system with nonlinear pitching stiffness driven by Lévy noise.

Chaos

January 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models.

View Article and Find Full Text PDF

We present a complete framework of stochastic thermodynamics for a single-mode linear optical cavity driven on resonance. We first show that the steady-state intracavity field follows the equilibrium Boltzmann distribution. The effective temperature is given by the noise variance, and the equilibration rate is the dissipation rate.

View Article and Find Full Text PDF

Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.

View Article and Find Full Text PDF

In this study, we introduce a coupled fractional system consisting of two fluctuating-mass oscillators with time delay and investigate their collective resonant behaviors. First, we achieve complete synchronization between the average behaviors of these oscillators. We then derive the exact analytical expression for the output amplitude gain, and based on this, we observe generalized stochastic resonance (GSR) in the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!