Towards the Measurement of Sea-Ice Thickness Using a Time-Domain Inductive Measurement System.

Sensors (Basel)

Department of Electronic and Electrical Engineering, University of Manchester, Manchester M13 9PL, UK.

Published: January 2025

Frequency-domain electromagnetic induction (EMI) is routinely used to detect the presence of seawater due to the inherent electrical conductivity of the seawater. This approach is used to infer sea-ice thickness (SIT). A time-domain EMI sensor is presented, which demonstrates the potential for correlating the spectroscopic properties of the received signal with the distance to the sea surface. This is a novel approach to SIT measurement, which differs from existing methods in that it uses measurements from 10 kHz to 93 kHz rather than a single frequency. The sensor was tested at a tidal pool containing seawater and measured to have a conductivity of 57.3 mS/cm. Measurements were performed at a range of heights between 0.2 m and 1.9 m above the sea surface and for inclinations from 0° to 45°. These measurements were correlated with Finite Element Modeling (FEM) simulations performed in COMSOL. The measured and simulated datasets are presented along with a proposed form of post-processing, which establishes a correlation between the distance to the sea surface and the measured EMI response. This forms a proxy measurement for the absolute distance from the EMI sensor to the sea surface. Because the air gap between the sensor and the seawater is indicative of the properties of sea ice, this study demonstrates a novel approach to non-destructive measurement of sea-ice thickness. The measurements show that this distance to the sea surface can be estimated to within approximately 10% of the known value from 0.2-1.5 m and 15% from 1.5 to 1.9 m.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25020510DOI Listing

Publication Analysis

Top Keywords

sea surface
20
sea-ice thickness
12
distance sea
12
measurement sea-ice
8
emi sensor
8
novel approach
8
sea
6
measurement
5
surface
5
thickness time-domain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!