Borehole strainmeters are essential tools for observing crustal deformation. In long-term observational applications, the dynamic changes in crustal deformation over multi-year scales often exceed the single measurement range of borehole strainmeters. Expanding the measurement range while maintaining high precision is a critical technical challenge. To address this, a full-range measurement system was developed using a bidirectional analog multi-switch based on MOS transistors and automatic feedback control. This system automatically adjusts the zero point of the measurement bridge, maintaining the bridge output at a near-balanced state. The quantifiable zero-setting actions are dynamically converted into equivalent voltage, enabling automatic full-range measurements while fully utilizing the effective linear range of the differential capacitive sensors. A laboratory performance tests demonstrated that an RZB borehole strainmeter equipped with this automatic zero-setting range extension system successfully covers the differential capacitive sensor's effective linear range of approximately 100 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25020476 | DOI Listing |
Sensors (Basel)
January 2025
National Institute of Natural Hazards, Beijing 100085, China.
Borehole strainmeters are essential tools for observing crustal deformation. In long-term observational applications, the dynamic changes in crustal deformation over multi-year scales often exceed the single measurement range of borehole strainmeters. Expanding the measurement range while maintaining high precision is a critical technical challenge.
View Article and Find Full Text PDFSensors (Basel)
June 2024
Optoelectronic System Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Moho tomography is important for studying the deep Earth structure and geodynamics, and fiber borehole strainmeters are broadband, low-noise, and attractive tools for seismic observation. Recently, many studies have shown that fiber optic seismic sensors can be used for subsurface structure imaging based on ambient noise cross-correlation, similar to conventional geophones. However, this array-dependent cross-correlation method is not suitable for fiber borehole strainmeters.
View Article and Find Full Text PDFSci Rep
June 2020
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Napoli, Italy.
Two paroxysmal explosions occurred at Stromboli volcano in the Summer 2019, the first of which, on July 3, caused one fatality and some injuries. Within the 56 days between the two paroxysmal explosions, effusive activity from vents located in the summit area of the volcano occurred. No significant changes in routinely monitored parameters were detected before the paroxysmal explosions.
View Article and Find Full Text PDFSci Rep
May 2019
Istituto Nazionale di Geofisica e Vulcanologia - Osservatorio Etneo, Sezione di Catania, Italy.
Unprecedented ultra-small strain changes (~10-10), preceding and accompanying the 2017 explosive-effusive activity, were revealed by a high precision borehole strainmeter at Etna. No pre- or co-eruptive deformation was detected by the GPS measurements, which often fail to detect ground deformation engendered by short-term small volcanic events due to their limited accuracy (millimetres to few centimetres). Through the analysis and detection of ultra-small strain changes (few tens of nanostrain), revealed by filtering the raw data, a significant time correspondence with the eruptive activity is observed.
View Article and Find Full Text PDFSensors (Basel)
April 2017
Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA.
Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!