This paper presents a comparative study of different AI models for indoor positioning systems, emphasizing improvements in localization accuracy and processing time. This study examines Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs), and the Kalman filter using a real Received Signal Strength Indicator (RSSI) and 9-axis ICM-20948 sensor. An in-depth analysis is provided in this paper for data cleaning and feature selection to reduce errors for all the models. We evaluate these models in terms of localization accuracy and prediction time. The RNN model shows the best performance, achieving a localization error of 0.247 m with a delay of 0.077 s per position location for an area of 12 m × 9.5 m using four anchors. This research highlights the importance of selecting AI models for effective mobile tracking according to test and validation data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25020475 | DOI Listing |
J Ultrasound
January 2025
Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
Introduction: Post-stroke cognitive impairment (PSCI) and dementia affect short- and long-term outcome after stroke and can persist even after recover from a physical handicap. The process underlying PSCI is not yet fully understood. Transcranial Doppler ultrasound (TCD) is a feasible method to investigate cerebrovascular aging or dementia, through the pulsatility index (PI), the cerebrovascular reactivity (e.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China.
Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.
The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.
View Article and Find Full Text PDFSci Rep
January 2025
School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Menstrual pain affects women's quality of life and productivity, yet objective molecular markers for its severity have not been established owing to the variability in blood levels and chemical properties of potential markers such as plasma steroid hormones, lipid mediators, and hydrophilic metabolites. To address this, we conducted a metabolomics study using five analytical methods to identify biomarkers that differentiate menstrual pain severity. This study included 20 women, divided into mild (N = 12) and severe (N = 8) pain groups based on their numerical pain rating scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!