Generally, the electrocardiography (ECG) system plays an important role in preventing and diagnosing heart diseases. To further improve the amenity and convenience of using an ECG system, we built a customized capacitive electrocardiography (cECG) system with one wet electrode, sixteen non-contact electrodes, two ADS1299 chips, and one STM32F303-based microcontroller unit (MCU). This new cECG system could acquire, save, and display the ECG data in real time. The bias feedback as a critical technique was routed to the left hand with the wet Ag/AgCl electrode, which could greatly suppress the power line noise. After all artifacts were removed, the ECG signals could be discerned clearly. We demonstrated that the ECG signals acquired with the capacitive electrodes were similar to those with the wet electrode. Thus, we successfully provide a new configuration for cECG monitoring at home or in a clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25020445 | DOI Listing |
Sensors (Basel)
January 2025
CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China.
Generally, the electrocardiography (ECG) system plays an important role in preventing and diagnosing heart diseases. To further improve the amenity and convenience of using an ECG system, we built a customized capacitive electrocardiography (cECG) system with one wet electrode, sixteen non-contact electrodes, two ADS1299 chips, and one STM32F303-based microcontroller unit (MCU). This new cECG system could acquire, save, and display the ECG data in real time.
View Article and Find Full Text PDFNat Commun
November 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
Efficiently mixed conduction between ionic and electronic charges stands to revolutionize the studies in organic electrochemical transistors (OECTs). However, inefficient ion transport due to the long-range injection and migration process in the bulk film presents challenges for enhancing the steady and transient performance of OECTs. In this work, we proposed a lateral intercalation-assisted ion transport strategy to assist volumetric ion charging, by introducing a striped microstructure in the conductive channel.
View Article and Find Full Text PDFZhongguo Yi Liao Qi Xie Za Zhi
July 2024
Shanghai Institute of Medical Device Testing, Shanghai, 201318.
To comprehensively meet the test requirements for the common mode rejection ratio (CMRR) across different ECG-particular standards, this paper presents the design of an ECG CMRR automatic test system. The hardware component primarily consists of a test signal generation module, an automatic control network (which includes a resistance-capacitance network control module and a polarization voltage control module), and a noise level switching module. The software portion enables automatic control and user interaction.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2024
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems.
View Article and Find Full Text PDFMed Biol Eng Comput
December 2024
Department of Computer Science and Software Engineering, Auckland University of Technology, 6 St Paul St, Auckland, 1010, New Zealand.
Current research focuses on improving electrocardiogram (ECG) monitoring systems to enable real-time and long-term usage, with a specific focus on facilitating remote monitoring of ECG data. This advancement is crucial for improving cardiovascular health by facilitating early detection and management of cardiovascular disease (CVD). To efficiently meet these demands, user-friendly and comfortable ECG sensors that surpass wet electrodes are essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!