This paper introduces RWA-BFT, a reputation-weighted asynchronous Byzantine Fault Tolerance (BFT) consensus algorithm designed to address the scalability and performance challenges of blockchain systems in large-scale IoT scenarios. Traditional centralized IoT architectures often face issues such as single points of failure and insufficient reliability, while blockchain, with its decentralized and tamper-resistant properties, offers a promising solution. However, existing blockchain consensus mechanisms struggle to meet the high throughput, low latency, and scalability demands of IoT applications. To address these limitations, RWA-BFT adopts a two-layer blockchain architecture; the first layer leverages reputation-based filtering to reduce computational complexity by excluding low-reputation nodes, while the second layer employs an asynchronous consensus mechanism to ensure efficient and secure communication among high-reputation nodes, even under network delays. This dual-layer design significantly improves performance, achieving higher throughput, lower latency, and enhanced scalability, while maintaining strong fault tolerance even in the presence of a substantial proportion of malicious nodes. Experimental results demonstrate that RWA-BFT outperforms HB-BFT and PBFT algorithms, making it a scalable and secure blockchain solution for decentralized IoT applications.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25020413DOI Listing

Publication Analysis

Top Keywords

rwa-bft reputation-weighted
8
reputation-weighted asynchronous
8
large-scale iot
8
fault tolerance
8
iot applications
8
iot
5
blockchain
5
rwa-bft
4
asynchronous bft
4
bft large-scale
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!