Major depressive disorder (MDD) is associated with substantial morbidity and mortality, yet its diagnosis and treatment rates remain low due to its diverse and often overlapping clinical manifestations. In this context, electroencephalography (EEG) has gained attention as a potential objective tool for diagnosing depression. This study aimed to evaluate the effectiveness of EEG in identifying MDD by analyzing 140 EEG recordings from patients diagnosed with depression and healthy volunteers. Using various machine learning (ML) classification models, we achieved up to 80% accuracy in distinguishing individuals with MDD from healthy controls. Despite its promise, this approach has limitations. The variability in the clinical and biological presentations of depression, as well as patient-specific confounding factors, must be carefully considered when integrating ML technologies into clinical practice. Nevertheless, our findings suggest that an EEG-based ML model holds potential as a diagnostic aid for MDD, paving the way for further refinement and clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25020409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!