The detection of highly toxic chemicals such as phosgene is crucial for addressing the severe threats to human health and public safety posed by terrorist attacks and industrial mishaps. However, timely and precise monitoring of phosgene at a low cost remains a significant challenge. This work is the first to report a novel fluorescent system based on the Intramolecular Charge Transfer (ICT) effect, which can rapidly detect phosgene in both solution and gas phases with high sensitivity by integrating a benzo[1,2-b:6,5-b']dithiophene-4,5-diamine (BDTA) probe. Among existing detecting methods, this fluorescent system stands out as it can respond to phosgene within a mere 30 s and has a detection limit as low as 0.16 μM in solution. Furthermore, the sensing mechanism was rigorously validated through high-resolution mass spectrometry (HRMS) and density functional theory (DFT) calculations. As a result, this fluorescent probing system for phosgene can be effectively adapted for real-time, high-sensitivity sensing and used as a test strip for visual monitoring without the need for specific equipment, which will also provide a new strategy for the fluorescent detection of other toxic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25020407 | DOI Listing |
BMJ Open
January 2025
College of Medicine and Dentistry, James Cook University, Queensland Research Centre for Peripheral Vascular Disease, Townsville, Queensland, Australia.
Introduction: Patients with peripheral artery disease (PAD) can experience intermittent claudication, which limits walking capacity and the ability to undertake daily activities. While exercise therapy is an established way to improve walking capacity in people with PAD, it is not feasible in all patients. Neuromuscular electrical stimulation (NMES) provides a way to passively induce repeated muscle contractions and has been widely used as a therapy for chronic conditions that limit functional capacity.
View Article and Find Full Text PDFEur J Orthop Surg Traumatol
January 2025
Duzce University, Düzce, Turkey.
Purpose: Blood loss and pain management are significant concerns in total knee arthroplasty (TKA). Tranexamic acid (TA) and cryotherapy have been used separately to address these issues, but their comparative effectiveness is not well studied. This study aimed to evaluate the efficacy of intravenous TA and cryotherapy in reducing blood loss and improving clinical outcomes after TKA.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China.
Aromatase plays a crucial role in the conversion of androgens to oestrogens and is often overexpressed in hormone-dependent tumours, particularly breast cancer. [18F]BIBD-071, which has excellent binding affinity for aromatase and good pharmacokinetics, has potential for the diagnosis and treatment of aromatase-related diseases. The MCF-7 cell line, which is hormone receptor-positive (HR+), was used in the assessment of the novel [18F]-labelled radiotracer [18F]BIBD-071 via positron emission tomography (PET) imaging of an HR+ breast cancer xenograft model.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
: Gegen Qinlian Decoction (GQD), is used for intestinal disorders like ulcerative colitis, irritable bowel syndrome, and colorectal cancer. But the precise mechanisms underlying its anti-inflammatory and anti-tumor effects are not fully elucidated. : Use network pharmacology to identify targets and pathways of GQD.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen, Germany.
This work leverages ultrasonic guided waves (UGWs) to detect and localize damage in structures using lightweight Artificial Intelligence (AI) models. It investigates the use of machine learning (ML) to train the effects of the damage on UGWs to the model. To reduce the number of trainable parameters, a physical signal processing approach is applied to the raw data before passing the data to the model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!