Co-Optimization Operation of Distribution Network-Containing Shared Energy Storage Multi-Microgrids Based on Multi-Body Game.

Sensors (Basel)

Xi'an Power Supply Company, State Grid Shaanxi Electric Power Co., Ltd., Xi'an 710032, China.

Published: January 2025

Under the carbon peaking and carbon neutrality target background, efficient collaborative scheduling between distribution networks and multi-microgrids is of great significance for enhancing renewable energy accommodation and ensuring stable system operation. Therefore, this paper proposes a collaborative optimization method for the operation of distribution networks and multi-microgrids with shared energy storage based on a multi-body game. The method is modeled and solved in two stages. In the first stage, a multi-objective optimization configuration model for shared energy storage among multi-microgrids is established, with optimization objectives balancing the randomness of renewable energy fluctuations and the economics of each microgrid undertaking shared energy storage. The charging and discharging interactive power of energy storage and each microgrid at various time periods are obtained and passed to the second stage. In the second stage, with the distribution network as the leader and shared energy storage and multi-microgrids as followers, a game optimization model with one leader and 2 followers is established. The model is solved based on an outer-layer genetic algorithm nested with an inner-layer solver to determine the electricity purchase and sale prices among the distribution network, multi-microgrids, and shared energy storage at various time periods, thereby minimizing operational costs. Finally, based on the power interaction of microgrids to measure their contributions, an improved Shapley value cost allocation method is proposed, effectively achieving a balanced distribution of benefits among the distribution network, shared energy storage, and multi-microgrids, thereby improving overall operational revenue. Meanwhile, a new method for calculating the shared energy storage capacity and the upper limit of charging and discharging power based on a game framework was proposed, which can save 37.23% of the power upper limit and 44.89% of the capacity upper limit, effectively saving the power upper limit and capacity upper limit.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25020406DOI Listing

Publication Analysis

Top Keywords

energy storage
36
shared energy
32
upper limit
20
storage multi-microgrids
16
distribution network
12
capacity upper
12
energy
11
storage
9
operation distribution
8
shared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!