In existing coverage challenges within wireless sensor networks, traditional sensor perception models often fail to accurately represent the true transmission characteristics of wireless signals. In more complex application scenarios such as warehousing, residential areas, etc., this may lead to a large gap between the expected effect of actual coverage and simulated coverage. Additionally, these models frequently neglect critical factors such as sensor failures and malfunctions, which can significantly affect signal detection. To address these limitations and enhance both network performance and longevity, this study introduces a perception model that incorporates path loss and false alarm probability. Based on this perception model, the optimization objective function of the WSN node optimization coverage problem is established, and then the intelligent optimization algorithm is used to solve the objective function and finally achieve the optimization coverage of sensor nodes. The study begins by deriving a logarithmic-based path loss model for wireless signals. It then employs the Neyman-Pearson criterion to formulate a maximum detection probability model under conditions where the cost function and prior probability are unknown, constraining the false alarm rate. Simulated experiments are conducted to assess the influence of various model parameters on detection probability, providing comparative analysis against traditional perception models. Ultimately, an optimization model for WSN coverage, based on combined detection probability, is developed and solved using an intelligent optimization algorithm. The experimental results indicate that the proposed model more accurately captures the signal transmission and detection characteristics of sensor nodes in WSNs. In the coverage area of the same size, the coverage of the model constructed in this paper is compared with the traditional 0/1 perception model and exponential decay perception model. The model can achieve full coverage of the area with only 50 nodes, while the exponential decay model requires 54 nodes, and the coverage of the 0/1 model is still less than 70% at 60 nodes. According to the simulation experiments, it can be basically proved that the WSN node optimization coverage strategy based on the proposed model provides an effective solution for improving network performance and extending network lifespan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25020396 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!