Unmanned aerial vehicle (UAV)-based wireless sensor networks (WSNs) hold great promise for supporting ground-based sensors due to the mobility of UAVs and the ease of establishing line-of-sight links. UAV-based WSNs equipped with mobile edge computing (MEC) servers effectively mitigate challenges associated with long-distance transmission and the limited coverage of edge base stations (BSs), emerging as a powerful paradigm for both communication and computing services. Furthermore, incorporating simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) as passive relays significantly enhances the propagation environment and service quality of UAV-based WSNs. However, most existing studies place STAR-RISs in fixed positions, ignoring the flexibility of STAR-RISs. Some other studies equip UAVs with STAR-RISs, and UAVs act as flight carriers, ignoring the computing and caching capabilities of UAVs. To address these limitations, we propose an energy-efficient aerial STAR-RIS-aided computing offloading and content caching framework, where we formulate an energy consumption minimization problem to jointly optimize content caching decisions, computing offloading decisions, UAV hovering positions, and STAR-RIS passive beamforming. Given the non-convex nature of this problem, we decompose it into a content caching decision subproblem, a computing offloading decision subproblem, a hovering position subproblem, and a STAR-RIS resource allocation subproblem. We propose a deep reinforcement learning (DRL)-successive convex approximation (SCA) combined algorithm to iteratively achieve near-optimal solutions with low complexity. The numerical results demonstrate that the proposed framework effectively utilizes resources in UAV-based WSNs and significantly reduces overall system energy consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25020393 | DOI Listing |
Sensors (Basel)
January 2025
Intelligent Control Laboratory, Xi'an Research Institute of High Technology, Xi'an 710025, China.
For public security purposes, distributed surveillance systems are widely deployed in key areas. These systems comprise visual sensors, edge computing boxes, and cloud servers. Resource scheduling algorithms are critical to ensure such systems' robustness and efficiency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Business, Beijing Wuzi University, Beijing 101149, China.
Unmanned aerial vehicle (UAV)-based wireless sensor networks (WSNs) hold great promise for supporting ground-based sensors due to the mobility of UAVs and the ease of establishing line-of-sight links. UAV-based WSNs equipped with mobile edge computing (MEC) servers effectively mitigate challenges associated with long-distance transmission and the limited coverage of edge base stations (BSs), emerging as a powerful paradigm for both communication and computing services. Furthermore, incorporating simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) as passive relays significantly enhances the propagation environment and service quality of UAV-based WSNs.
View Article and Find Full Text PDFPLoS One
January 2025
Robotics and Internet-of-Things Laboratory, Prince Sultan University, Riyadh, Saudi Arabia.
The performance of drones, especially for time-sensitive tasks, is critical in various applications. Fog nodes strategically placed near IoT devices serve as computational resources for drones, ensuring quick service responses for deadline-driven tasks. However, the limited battery capacity of drones poses a challenge, necessitating energy-efficient Internet of Drones (IoD) systems.
View Article and Find Full Text PDFData Brief
February 2025
Maritime Engineering Research Group, School of Engineering, University of Southampton, SO16 7QF UK.
This article presents data derived from a series of experiments conducted on a scaled model ship, examining its performance in both calm water and regular waves. The acquisition of high-quality experimental data is essential for refining Computational Fluid Dynamics (CFD) simulations and modifying analytical methods to evaluate the powering performance of ships. Despite notable advancements in numerical models, there exists a corresponding imperative to elevate the precision of measurements and insights obtained from towing tank tests.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Computer-Aided Design and Test (CADT) Research Group, McMaster University, Hamilton, ON L8S 4L8, Canada.
A parallelized field-programmable gate array (FPGA) architecture is proposed to realize an ultra-fast, compact, and low-cost dual-channel ultra-wideband (UWB) pulsed-radar system. This approach resolves the main shortcoming of current FPGA-based radars, namely their low processing throughput, which leads to a significant loss of data provided by the radar receiver. The architecture is integrated with an in-house UWB pulsed radar operating at a sampling rate of 20 gigasamples per second (GSa/s).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!