ZnO/MO (M = Fe, Co, Ni, Sn, In, Ga; [M]/([Zn] + [M]) = 15 mol%) nanofiber heterostructures were obtained by co-electrospinning and characterized by X-ray diffraction, scanning electron microscopy and X-ray fluorescence spectroscopy. The sensor properties of ZnO and ZnO/MO nanofibers were studied toward reducing gases CO (20 ppm), methanol (20 ppm), acetone (20 ppm), and oxidizing gas NO (1 ppm) in dry air. It was demonstrated that the temperature of the maximum sensor response of ZnO/MO nanofibers toward reducing gases is primarily influenced by the binding energy of chemisorbed oxygen with the surface of the modifier's oxides. When detecting oxidizing gas NO, high sensitivity at a low measurement temperature can be achieved with a high concentration of free electrons in the near-surface layer of zinc oxide grains, which is determined by the band bending at the ZnO/MO interface characterized by the difference in the electron work function of ZnO and MO.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25020376DOI Listing

Publication Analysis

Top Keywords

nanofiber heterostructures
8
zno/mo nanofibers
8
reducing gases
8
oxidizing gas
8
zno/mo
5
zno/mo nanofiber
4
heterostructures receptor's
4
receptor's role
4
role gas
4
gas detection
4

Similar Publications

ZnO/MO (M = Fe, Co, Ni, Sn, In, Ga; [M]/([Zn] + [M]) = 15 mol%) nanofiber heterostructures were obtained by co-electrospinning and characterized by X-ray diffraction, scanning electron microscopy and X-ray fluorescence spectroscopy. The sensor properties of ZnO and ZnO/MO nanofibers were studied toward reducing gases CO (20 ppm), methanol (20 ppm), acetone (20 ppm), and oxidizing gas NO (1 ppm) in dry air. It was demonstrated that the temperature of the maximum sensor response of ZnO/MO nanofibers toward reducing gases is primarily influenced by the binding energy of chemisorbed oxygen with the surface of the modifier's oxides.

View Article and Find Full Text PDF

Confining CoSe/MoSe Heterostructures in Interconnected Carbon Polyhedrons for Superior Potassium Storage.

ChemSusChem

January 2025

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China.

Metal selenides hold promise as feasible anode materials for potassium-ion batteries (PIBs), but still face problems such as poor potassium storage kinetics and dramatic volume expansion. Coupling heterostructure engineering with structural design could be an effective strategy for rapid and stable K storage. Herein, CoSe/MoSe heterojunction encapsulated in nitrogen-doped carbon polyhedron and further interconnected by three-dimensional nitrogen-doped carbon nanofibers (CoMoSe@NCP/NCFs) is ingeniously constructed.

View Article and Find Full Text PDF

As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.

View Article and Find Full Text PDF

The active site density, intrinsic activity, and supporting substrate of cobalt phosphide catalysts are vital to their performance in alkaline water electrolysis. In this work, a CoP/CoP loaded on cellulose nanofiber-derived carbon aerogels (CP/CCAs) bifunctional electrocatalyst with a three-dimensional network and heterostructure is illustrated through sequential facile hydrothermal, freeze-drying, and phosphorylation processes. The three-dimensional network of carbon aerogels derived from cellulose nanofibers reveals a specific surface area of 183.

View Article and Find Full Text PDF

LaF@SiO yolk-shell heterostructure nanofiber-modified separator enhances the long-cycling performance of lithium-sulfur batteries.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China. Electronic address:

High-energy-density lithium-sulfur (Li-S) cells are identified as one of the most prospective next-generation energy storage appliances owing to their numerous advantages. Nonetheless, their widespread applications are restricted by the unwanted shuttling effect and tardy conversion reaction kinetics of lithium polysulfides (LiPSs). To address these puzzles, we present an innovative strategy for the one-pot synthesis of LaF@SiO yolk-shell heterostructure nanofibers (YSHNFs) through a straightforward uniaxial electrospinning process coupled with fluorination, avoiding the complexities of traditional methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!