This paper presents the design and performance evaluation of an inductive conductivity sensor with a double tuning impedance matching network to enhance sensitivity and improve linearity. The sensor's equivalent circuit model is analyzed and verified through simulation, and impedance matching is shown to significantly increase the sensor's output signal, particularly at low conductivity measurements. Double tuning impedance matching expands the frequency response range and optimizes power transfer efficiency, achieving a higher power factor across a broader frequency range. Experimental results confirm that the sensor's sensitivity increases by approximately 30% after impedance matching with optimal performance at a frequency of 9865 Hz. Furthermore, while the impedance matching improves sensitivity, it also introduces some nonlinear errors, which are evaluated using a performance function that balances sensitivity and linearity. The results demonstrate that impedance matching enhances the sensor's measurement capability, making it more effective in practical applications where conductivity changes need to be accurately monitored across varying frequencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25020293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!