Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation. After modulation, the optimal 3%WO@TCN exhibited a maximal degradation rate constant that was twofold higher than that of TCN alone and showed continuous H generation in the photocatalytic hydrogen evolution. Mechanistic studies revealed that •O constituted the major active species for the photocatalytic degradation of tetracycline. Experimental and DFT results verified the electronic transmission direction of WO@TCN heterojunction. Overall, this study facilitates the structural design of green TCN-based heterojunction photocatalysts and expands the application of TCN in the diverse photocatalytic processes. Additionally, this study offers valuable insights into strategically employing acid regulation modulation to enhance the performance of carbon nitride-based photocatalysts by altering the topography of WO@TCN composite material dramatically.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules30020379DOI Listing

Publication Analysis

Top Keywords

wo@tcn heterojunction
8
photocatalytic degradation
8
water splitting
8
photocatalytic
6
self-assembly strategy
4
strategy synthesis
4
wo@tcn
4
synthesis wo@tcn
4
heterojunction
4
heterojunction efficient
4

Similar Publications

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

ZnO/MO (M = Fe, Co, Ni, Sn, In, Ga; [M]/([Zn] + [M]) = 15 mol%) nanofiber heterostructures were obtained by co-electrospinning and characterized by X-ray diffraction, scanning electron microscopy and X-ray fluorescence spectroscopy. The sensor properties of ZnO and ZnO/MO nanofibers were studied toward reducing gases CO (20 ppm), methanol (20 ppm), acetone (20 ppm), and oxidizing gas NO (1 ppm) in dry air. It was demonstrated that the temperature of the maximum sensor response of ZnO/MO nanofibers toward reducing gases is primarily influenced by the binding energy of chemisorbed oxygen with the surface of the modifier's oxides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!