Characterization and Analysis of 2-(2-Phenylethyl)chromone Derivatives and Sesquiterpenoids from Agarwood of Four "Qi-Nan" Clones () with Different Induction Times.

Molecules

The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.

Published: January 2025

In recent years, some new "Qi-Nan" clones of with the characteristics of easy induction and high-quality agarwood have been obtained, through the cultivation and propagation of grafted seedlings. These clones are used for the intensive production of high-quality agarwood. The speed of resin formation and yield are crucial for the development of the agarwood industry. The differences in yield and chemical composition among different Qi-Nan clones and induction times are worth investigating. While the chemical composition differences between Qi-Nan and ordinary have been extensively studied, the effects of induction time coupled with different Qi-Nan clones on the chemical composition of Qi-Nan agarwood remain insufficiently explored. This study compared the changes in the chemical composition of four "Qi-Nan" clones of after 6, 12, and 24 months of induction through GC-QTOF-MS, the chemical composition and structure types of the four "Qi-Nan" clones were mainly 2-(2-phenylethyl)chromone derivatives (PECs) and Sesquiterpenoids (SESs), with the prolongation of induction time, the content of SESs increased, while the content of PECs decreased. Both the differences among clones and the induction time of "Qi-Nan" agarwood influence its chemical composition, which in turn affects the quality of the agarwood. Among these factors, induction time has a greater impact on the production of PECs in agarwood. The prolongation of induction significantly enhanced the yield of "Qi-Nan" agarwood and exhibited an inducing effect on the production of 2-(2-phenylethyl) chromone and 2-(2-4 phenylethyl)chromone. Compared with the agarwood obtained after 6 and 12 months of induction, the agarwood of "Qi-Nan" after 24 months of induction exhibited superior quality. The induction time for high-quality agarwood from the XGY clone was shorter (12 months) compared to the RH, YYZ, and AS clones (24 months). The study underscores that optimizing induction time and selecting suitable "Qi-Nan" clones can significantly enhance agarwood yield, quality, and production efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules30020352DOI Listing

Publication Analysis

Top Keywords

chemical composition
24
induction time
24
"qi-nan" clones
20
agarwood
13
induction
13
clones induction
12
high-quality agarwood
12
months induction
12
clones
10
2-2-phenylethylchromone derivatives
8

Similar Publications

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!