Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration. The rotational behavior of phthalocyanine rotator in two configurations were investigated by VT-H NMR experiments, and the results indicated that the phthalocyanine rotator possessed a smaller rotational energy barrier in the isomer than in the isomer, which was also supported by DFT calculations. This result demonstrates that the rotation of phthalocyanine rotator in (phthalocyaninato)(porphyrinato) rare earth triple-decker complex can be successfully modulated by photo-isomerization via altering irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules30020326 | DOI Listing |
Molecules
January 2025
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.
View Article and Find Full Text PDFDalton Trans
January 2019
School of Materials Science and Engineering, Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
A calix[4]arene (C4A)-functionalized (phthalocyaninato)(porphyrinato) europium(iii) triple-decker compound (Pc)Eu(Pc)Eu[T(C4A)PP] (1) is firstly designed, synthesized and prepared into well-organized films using a simple solution-processing quasi-Langmuir-Shäfer (QLS) method. The QLS film of 1 on an ITO (film 1/ITO) electrode, serving as a host-guest electrochemical recognition layer, is able to establish specific responses/interactions toward organic molecules with biological and drug interest including dopamine (DA), uric acid (UA), tyrosine (Tyr), tryptophan (Trp) and Acetaminophen (APAP), depending mainly on the matching degree of molecular dimensions between the analytes and the C4A cavity in addition to their chemical nature. More significantly, the film 1/ITO electrode shows a wide linear range of electrochemical detection (from 0.
View Article and Find Full Text PDFInorg Chem
May 2012
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
A series of four mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes (Pc)M[Por(Fc)(2)] [Pc = phthalocyaninate; Por(Fc)(2) = 5,15-di(ferrocenyl)-porphyrinate; M = Eu (1), Y (2), Ho (3), Lu (4)] and their europium(III) triple-decker counterpart (Pc)Eu(Pc)Eu[Por(Fc)(2)] (5), each with two ferrocenyl units at the meso-positions of their porphyrin ligands, have been designed and prepared. The double- and triple-decker complexes 1-5 were characterized by elemental analysis and various spectroscopic methods. The molecular structures of two double-deckers 1 and 4 were also determined by single-crystal X-ray diffraction analysis.
View Article and Find Full Text PDFChem Commun (Camb)
June 2011
Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
Two novel mixed (phthalocyaninato)(porphyrinato) rare-earth and cadmium heterometal complexes have been fabricated in one-pot reaction and their sandwich quadruple-decker nature is unambiguously revealed by X-ray single crystal analysis.
View Article and Find Full Text PDFInorg Chem
March 2011
Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
With the view to creating novel sandwich-type tetrapyrrole rare earth complexes toward potential applications in material science and chiral catalysis, two new optically active mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes with both (R)- and (S)-enantiomers [M(2)(Pc)(2)(TCBP)] {TCBP = Meso-tetrakis [3,4-(11,12:13,14-di(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-triene)-phenyl] porphyrinate; M = Eu (1), Y (2)} have been designed and prepared by treating optically active metal free porphyrin (R)-/(S)-H(2)TCBP with M(Pc)(2) in the presence of corresponding M(acac)(3)·nH(2)O (acac = acetylacetonate) in refluxing 1,2,4-trichlorobenzene (TCB). These novel mixed ring rare earth triple-decker compounds were characterized by a wide range of spectroscopic methods including MS, (1)H NMR, IR, electronic absorption, and magnetic circular-dichroism (MCD) spectroscopic measurements in addition to elemental analysis. Perfect mirror image relationship was observed in the Soret and Q absorption regions in the circular-dichroism (CD) spectra of the (R)- and (S)-enantiomers, indicating the optically active nature of these two mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!