Many biologically active compounds have been identified in the mucus of the garden snail , which are effective in the treatment of several diseases such as cancer, ulcers, wounds, etc. The incorporation of these compounds into the green synthesis of copper nanoparticles (CuONPs-Muc) was demonstrated in our previous study. Based on the synergistic effect of two reducing agents- snail mucus and ascorbic acid (AsA)-on CuSO.5HO, which also act as stabilizers of the resulting compound, a new method for the "green" synthesis of CuONPs-Muc is presented. Using two reducing agents has several advantages, such as forming spherical nanoparticles with a diameter of about 150 nm and reducing the formation time of CuONPs-Muc to 3 h. Analyses by ultraviolet-visible spectroscopy (UV-Vis) and Fourier transform infrared spectroscopy (FT-IR) show the formation of CuONPs-Muc, composed of a mixture of copper and copper oxide. This was confirmed by scanning electron microscopy combined with energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD). Another important advantage of CuONPs obtained by the new method with two reducing agents is the stronger inhibitory effect on the bacterial growth of some Gram-positive and Gram-negative bacterial strains, compared to CuONPs-Muc prepared with only one reducing agent, i.e., a fraction of mucus with an MW > 20 kDa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules30020291 | DOI Listing |
Sci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFSci Rep
January 2025
Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.
Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.
View Article and Find Full Text PDFNat Commun
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China. Electronic address:
From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:
A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!