Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant.
Methods: This experiment was conducted in 7 L pots under laboratory conditions. Phenolic compounds were identified using a UHPLC-MS chromatography system. Antioxidant activity was assessed using well-known methods, including the DPPH scavenging activity and ferrous ion chelating activity.
Results: In Tartary buckwheat leaves, stems, seeds, and husks, 57 phenolic compounds were identified, with a predominance of quercetin 3-rutinoside, quercetin, kaempferol-3-rutinoside, kaempferol, and derivatives of coumaric acid. It was observed that the Tartary buckwheat samples subjected to drought stress exhibited a slight decrease in the majority of individual phenolic compounds.
Conclusions: The measurement of biological parameters indicated that plant regeneration after drought stress demonstrated a rapid recovery, which can be a positive response to the progression of climate changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules30020270 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!