A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the bis-amine used in the first step. Moreover, an additional substituent (allyl, ethynyl) may be inserted into the structure via nucleophilic addition of an organometallic reagent to the starting bis-glycosylamine. A symmetrical ethynyl-iminosugar proved susceptible to intramolecular Glaser coupling, affording the corresponding macrocyclic structure. Dimeric iminosugars were tested towards a series of commercial glycosidases to uncover potencies and selectivities when compared to DAB-1, their monomeric counterpart. Whereas a significant drop in inhibition potencies was observed towards glucosidases, some compounds displayed unexpected potent inhibition of β-galactosidase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules30020226 | DOI Listing |
Molecules
January 2025
Université de Reims Champagne-Ardenne, CNRS, ICMR, 51097 Reims, France.
A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the bis-amine used in the first step. Moreover, an additional substituent (allyl, ethynyl) may be inserted into the structure via nucleophilic addition of an organometallic reagent to the starting bis-glycosylamine.
View Article and Find Full Text PDFChemistry
April 2024
Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France).
Multivalency represents an appealing option to modulate selectivity in enzyme inhibition and transform moderate glycosidase inhibitors into highly potent ones. The rational design of multivalent inhibitors is however challenging because global affinity enhancement relies on several interconnected local mechanistic events, whose relative impact is unknown. So far, the largest multivalent effects ever reported for a non-polymeric glycosidase inhibitor have been obtained with cyclopeptoid-based inhibitors of Jack bean α-mannosidase (JBα-man).
View Article and Find Full Text PDFBioorg Chem
March 2022
Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Prof. García González, 1, 41012-Sevilla, Spain. Electronic address:
Two libraries of mono- and dimeric pyrrolidine iminosugars were synthesized by CuAAC and (thio)urea-bond-forming reactions from the respective azido/aminohexylpyrrolidine iminosugar precursors. The resulting monomeric and dimeric compounds were screened for inhibition of β-N-acetylglucosaminidase from Jack beans, the plant ortholog of human lysosomal hexosaminidases. A selection of the best inhibitors of these libraries was then evaluated against human lysosomal β-N-acetylhexosaminidase B (hHexB) and human nucleocytoplasmic β-N-acetylglucosaminidase (hOGA).
View Article and Find Full Text PDFEur J Med Chem
May 2018
Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012, Seville, Spain. Electronic address:
The synthesis of three libraries (1a-l, 1a'-l' and 2a-l) of dimeric iminosugars through CuAAC reaction between three different alkynyl pyrrolidines and a set of diazides was carried out. The resulting crude dimers were screened in situ against two α-fucosidases (libraries 1a-l and 1a'-l') and one β-galactosidase (2a-l). This method is pioneer in the search of divalent glycosidase inhibitors.
View Article and Find Full Text PDFChemistry
October 2017
Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino (FI), Italy.
Novel pyrrolidine-based multivalent iminosugars, synthesized by a CuAAC approach, have shown remarkable multivalent effects towards jack bean α-mannosidase and a Golgi α-mannosidase from Drosophila melanogaster, as well as a good selectivity with respect to a lysosomal α-mannosidase, which is important for anticancer applications. STD NMR and molecular modeling studies supported a multivalent mechanism with specific interactions of the bioactive iminosugars with Jack bean α-mannosidase. TEM studies suggested a binding mode that involves the formation of aggregates, which result from the intermolecular cross-linked network of interactions between the multivalent inhibitors and two or more dimers of JBMan heterodimeric subunits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!