This paper presents a comprehensive numerical investigation to simulate heat transfer and residual stress formation of Ti-6Al-4V alloy during the Laser Powder Bed Fusion process, using a finite element model (FEM). The FEM was developed with a focus on the effects of key process parameters, including laser scanning velocity, laser power, hatch space, and scanning pattern in single-layer scanning. The model was validated against experimental data, demonstrating good agreement in terms of temperature profiles and melt pool dimensions. The study elucidates the significant impact of process parameters on thermal gradients, melt pool characteristics, and residual stress distribution. An increase in laser velocity, from 600 mm/s to 1500 mm/s, resulted in a smaller melt pool area and faster cooling rate. Similarly, the magnitude of residual stress initially decreased and subsequently increased with increasing laser velocity. Higher laser power led to an increase in melt pool size, maximum temperature, and thermal residual stress. Hatch spacing also exhibited an inverse relationship with thermal gradient and residual stress, as maximum residual stress decreased by about 30% by increasing the hatch space from 25 µm to 75 µm. The laser scanning pattern also influenced the thermal gradient and residual stress distribution after the cooling stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18020368 | DOI Listing |
Am J Emerg Med
January 2025
Department of Emergency Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, United States of America. Electronic address:
Bacterial meningitis is an increasingly rare disease that carries significant morbidity and mortality. We describe the case of a 38-year-old male with a past medical history of pituitary macroadenoma with prior endonasal surgeries on prednisone therapy daily for resultant hypopituitarism and juvenile myoclonic epilepsy on lamotrigine daily who was transferred to an academic tertiary emergency department due to concern for developing pituitary apoplexy. At the outside emergency department, the patient presented complaining of sudden onset severe headache.
View Article and Find Full Text PDFAnimal
September 2024
Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada. Electronic address:
The feed efficiency (FE) expresses as the amount of feed required per unit of BW gain. Since feed cost is the major input cost in the mink industry, evaluating of FE is a crucial step for competitiveness of the mink industry. However, the FE measures have not been widely adopted for the mink due to the high cost of periodically measuring BW and daily feed intake.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria.
Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy.
This paper presents a comprehensive numerical investigation to simulate heat transfer and residual stress formation of Ti-6Al-4V alloy during the Laser Powder Bed Fusion process, using a finite element model (FEM). The FEM was developed with a focus on the effects of key process parameters, including laser scanning velocity, laser power, hatch space, and scanning pattern in single-layer scanning. The model was validated against experimental data, demonstrating good agreement in terms of temperature profiles and melt pool dimensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!