The purpose of this study is to analyze the large deflection problem of bimodular functionally graded truncated thin conical shells under the transverse mechanical load and non-uniform thermal load, in which two different boundary constraints of the truncated shell with two ends simply supported and fully fixed are considered. It is assumed that the temperature distribution along the thickness direction satisfies the Fourier law of heat transfer, and the material properties change exponentially along the thickness direction while different properties in tension and compression are considered. The geometric equation of the conical shell is established based on the equivalent method of curvature correction of von-Kármán deformation theory, and the analytical solution of the problem is obtained by Ritz method. Numerical simulation of bimodular functionally graded conical shells under the thermal and mechanical loads is carried out by Abaqus, and the numerical solution agrees with the theoretical solution. The results show that the introduction of bimodular functionally graded material will affect the maximum displacement and this effect has different rules under the mechanical load and thermal load. In addition, factors such as the cone apex angle and the truncated distance have a great influence on the maximum displacement and its location of the conical shell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18020362 | DOI Listing |
Materials (Basel)
January 2025
School of Civil Engineering, Chongqing University, Chongqing 400045, China.
The purpose of this study is to analyze the large deflection problem of bimodular functionally graded truncated thin conical shells under the transverse mechanical load and non-uniform thermal load, in which two different boundary constraints of the truncated shell with two ends simply supported and fully fixed are considered. It is assumed that the temperature distribution along the thickness direction satisfies the Fourier law of heat transfer, and the material properties change exponentially along the thickness direction while different properties in tension and compression are considered. The geometric equation of the conical shell is established based on the equivalent method of curvature correction of von-Kármán deformation theory, and the analytical solution of the problem is obtained by Ritz method.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the design, synthesis, and evaluation of novel bimodular conjugate molecules combining telomere-targeting nucleoside analogs and phosphatidyl diglyceride groups.
View Article and Find Full Text PDFBiophys Chem
January 2025
Chemistry Department of Lomonosov Moscow State University, Moscow, Russia; Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Moscow, Russia. Electronic address:
Non-canonical nucleic acid structures possess an ability to interact selectively with proteins, thereby exerting influence over various intracellular processes. Numerous studies indicate that genomic G-quadruplexes and i-motifs are involved in the regulation of transcription. These structures are formed temporarily during the unwinding of the DNA double helix; and their direct determination is a rather difficult task.
View Article and Find Full Text PDFNanomicro Lett
October 2024
Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea.
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare. Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli. However, realistic mimesis, both in the skin's three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities, remains a challenging yet vital need for simplifying the design of flexible logic circuits.
View Article and Find Full Text PDFNucleic Acids Res
November 2024
Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!