The microstructure of metallic materials plays a crucial role in determining their performance. In order to accurately predict the dynamic recrystallization (DRX) behavior and microstructural evolution during the hot deformation process of GCr15 bearing steel, a microstructural evolution model for the DRX process of GCr15 steel was established by combining the level set (LS) method with the Yoshie-Laasraoui-Jonas dislocation dynamics model. Firstly, hot compression tests were conducted on GCr15 steel using the Gleeble-1500D thermal simulator, and the hardening coefficient and dynamic recovery coefficient of the Yoshie-Laasraoui-Jonas model were derived from the experimental flow stress data. The effects of temperature, strain, and strain rate on DRX behavior and grain size during the hot working process of GCr15 steel were investigated. Through secondary development of the software, the established microstructural evolution model was integrated into the DIGIMU software. Metallographic images were imported in situ to reconstruct its initial microstructure, enabling GCr15 steel DRX microstructure finite element simulation of the hot compression process. The predicted mean grain size and flow stress demonstrated a strong correlation and excellent agreement with the experimental results. The results demonstrate that the established DRX model effectively predicts the evolution of the DRX fraction and average grain size during the hot forging process and reliably forecasts DRX behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18020342 | DOI Listing |
Materials (Basel)
January 2025
Department of Mechanical Engineering, Jeju National University, 102 Daehak-Ro, Jeju-si 63243, Republic of Korea.
The microstructure of metallic materials plays a crucial role in determining their performance. In order to accurately predict the dynamic recrystallization (DRX) behavior and microstructural evolution during the hot deformation process of GCr15 bearing steel, a microstructural evolution model for the DRX process of GCr15 steel was established by combining the level set (LS) method with the Yoshie-Laasraoui-Jonas dislocation dynamics model. Firstly, hot compression tests were conducted on GCr15 steel using the Gleeble-1500D thermal simulator, and the hardening coefficient and dynamic recovery coefficient of the Yoshie-Laasraoui-Jonas model were derived from the experimental flow stress data.
View Article and Find Full Text PDFNanoscale
November 2024
School of Industrial Engineering, Purdue University, West Lafayette, IN 47906, USA.
Surface nanoengineering can significantly improve the mechanical properties and performance of metals, such as strength, hardness, fatigue, wear resistance, . In this work, we tailored the surface microstructure of GCr15 bearing steel within a thickness of approximately 800 μm using room temperature ultrasonic shot peening (USP) technology. Microstructure characterization studies reveal the formation of gradient nanosized spheroidal carbides and lath-shaped nano-martensite in the GCr15 bearing steel during the USP process.
View Article and Find Full Text PDFMicromachines (Basel)
August 2024
School of Mechatronic Engineering, Xi'an Technological University, Xi'an 710021, China.
Bearing steel (GCr15) is widely used in key parts of mechanical transmission for its excellent mechanical properties. Electrochemical machining (ECM) is a potential method for machining GCr15, as the machining process is the electrochemical dissolution of GCr15 regardless of its high hardness (>50 HRC). In ECM, NaNO solution is a popular electrolyte, as it has the ability to help in the nonlinear dissolution of many metallic alloy materials, making it useful for precision machining.
View Article and Find Full Text PDFMicromachines (Basel)
October 2023
School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
A nanosecond laser is used to fabricate groove-patterned textures on the upper surface of Ti-6Al-4V alloys, and then molybdic sulfide solid lubricants are filled into the grooves. The treated titanium alloy is subjected to friction and wear tests. The tribological performances of Ti-6Al-4V alloys are evaluated, and the wearing mechanism is analyzed.
View Article and Find Full Text PDFMicromachines (Basel)
August 2023
School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
The common material of bearing rings is GCr15 bearing steel which is a typical difficult-to-machine material. As an important working surface of the bearing, the inner surface of the raceway plays a vital role in the performance of the bearing. As an important means to solve the high-performance manufacturing of difficult-to-machine materials, longitudinal-torsional ultrasonic processing is widely used in various types of processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!