All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator.

Materials (Basel)

State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy & Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Published: January 2025

With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth. ITO is introduced in this design, which exhibits an ε-near-zero (ENZ) effect in the communication band. The real and imaginary parts of the refractive index of ITO undergo significant changes in response to variations in carrier concentration induced by the reverse bias voltage, thereby enabling efficient electro-optic modulation. Additionally, the design of the all-fiber micro-ring eliminates coupling losses associated with spatial optical-waveguide coupling, thereby resolving the high insertion loss of silicon waveguide modulators and the challenges of integrating MZI modulation structures. The results demonstrate that this modulator can achieve significant phase shifts at low voltages, with a modulation efficiency of up to 3.08 nm/V and a bandwidth reaching 82.04 GHz, indicating its potential for high-speed optical chip applications.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18020307DOI Listing

Publication Analysis

Top Keywords

all-fiber micro-ring
12
modulation efficiency
12
micro-ring resonator
8
p-si/n-ito heterojunction
8
electro-optic modulator
8
electro-optic
5
modulation
5
resonator based
4
based p-si/n-ito
4
heterojunction electro-optic
4

Similar Publications

All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator.

Materials (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy & Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!