Steel Ball Impact on SiC/AlSi12 Interpenetrated Composite by Peridynamics.

Materials (Basel)

CT-Lab UG (Haftungsbeschränkt), Nobelstr. 15, 70569 Stuttgart, Germany.

Published: January 2025

Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to describe the behavior of the material, considering its internal structure. The composite's structure is obtained by using X-ray computing tomography. The thorough computer tomography analysis allows for the high-precision identification of the shape and distribution of the pores in the matrix. The computational model prepared in the framework of the peridynamics method takes into account the pores and their shape. The pores in the structure appeared in the fabrication process. The impact of a steel ball is studied employing the peridynamics method. The sample without any porosity and a porous one were considered during the analyses. It has been found that the porosity of the matrix influences the plastic strain development, but the damage parameter in the skeleton is not affected significantly. The damage advancement in the skeleton during the process is practically identical in both cases. The equivalent plastic strain field is much smoother in a non-porous matrix than in a porous one. The porous matrix has high equivalent plastic strain concentrations, much higher than the non-porous matrix. The shape of the sample is affected by the porosity of the matrix. The sample with a porous matrix tends to fragment, and it shows a tendency towards spallation when in close contact to the surface with the base.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18020290DOI Listing

Publication Analysis

Top Keywords

aluminum alloy
12
plastic strain
12
steel ball
8
matrix
8
peridynamics method
8
sample porosity
8
porosity matrix
8
equivalent plastic
8
non-porous matrix
8
porous matrix
8

Similar Publications

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

FSW Optimization: Prediction Using Polynomial Regression and Optimization with Hill-Climbing Method.

Materials (Basel)

January 2025

Mechanical and Electrical Engineering Department, Polish Naval Academy, 81-103 Gdynia, Poland.

This study presents the optimization of the friction stir welding (FSW) process using polynomial regression to predict the maximum tensile load (MTL) of welded joints. The experimental design included varying spindle speeds from 600 to 2200 rpm and welding speeds from 100 to 350 mm/min over 28 experimental points. The resulting MTL values ranged from 1912 to 15,336 N.

View Article and Find Full Text PDF

The porous structure, in which many pores are intentionally placed inside the material, has excellent impact energy absorption properties. Recent studies have attempted to fabricate multi-layered porous structures with different mechanical properties within a single porous structure sample, and the mechanical properties of these structures are being elucidated. However, these studies mainly attempted to vary the densities, pore structures, and alloy compositions within a single material, such as aluminum, for the entire sample.

View Article and Find Full Text PDF

Eliminating Anisotropy of 7085 Alloy Forgings via Temperature Combination Control During Two-Stage Multi-Directional Forging.

Materials (Basel)

January 2025

National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China.

Due to its high mechanical properties and low quench sensitivity, 7085 aluminum alloy is suitable for the aircraft industry. However, large cross-section forgings of 7085 alloy usually have over 40% anisotropy in mechanical behaviors, especially in the vertical direction. In this study, two-stage multi-directional forgings (MDFs) with different temperature combinations, isothermal medium-temperature composite MDF (MC-MDF) and isothermal hot MDF (H-MDF), were applied to 7085 aluminum alloy ingots.

View Article and Find Full Text PDF

Aluminum and its alloys are widely used in the busbar structures of electrolytic aluminum production. However, they are prone to corrosion and wear damage during use, leading to a decline in current-transmission efficiency and potentially causing safety issues. To repair damaged aluminum busbars, this paper explores the feasibility of using cold spraying technology for surface restoration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!