We provide new experimental studies of the temperature dependence of the giant magnetoimpedance (GMI) effect and hysteresis loops of Fe-rich and Co-rich amorphous microwires with rather different room temperature magnetic properties and GMI effect features. We observed a remarkable modification of hysteresis loops and magnetic field dependence of the GMI ratio upon heating in both of the studied samples. We observed a noticeable improvement in the GMI ratio and a change in hysteresis loops from rectangular to inclined upon heating in Fe-rich microwire. However, the opposite trend was observed in Co-rich microwire, in which, upon heating, the shape of the hysteresis loop changed from linear to rectangular. Generally, the evolution of the shape of the hysteresis loops during heating correlates with the modification of the dependencies of the GMI ratio Δ/ on the magnetic field. For Co-rich microwire, the double-peak magnetic field dependence changed to single-peak, while for Fe-rich microwire, the opposite tendency was observed. The origin of the observed temperature dependences of the hysteresis loop and the GMI effect is discussed, considering internal stresses' relaxation during heating, the temperature dependencies of the magnetostriction coefficient, and internal stresses, as well as the Hopkinson effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18020287 | DOI Listing |
Materials (Basel)
January 2025
Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country, UPV/EHU, 20018 San Sebastian, Spain.
We provide new experimental studies of the temperature dependence of the giant magnetoimpedance (GMI) effect and hysteresis loops of Fe-rich and Co-rich amorphous microwires with rather different room temperature magnetic properties and GMI effect features. We observed a remarkable modification of hysteresis loops and magnetic field dependence of the GMI ratio upon heating in both of the studied samples. We observed a noticeable improvement in the GMI ratio and a change in hysteresis loops from rectangular to inclined upon heating in Fe-rich microwire.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
A stochastic energetics framework is applied to examine how periodically shifting the frequency of a time-dependent oscillating temperature gradient affects heat transport in a nanoscale molecular model. We specifically examine the effects that frequency switching, i.e.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Patras, Patras 265 04, Greece.
A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.
View Article and Find Full Text PDFHeliyon
January 2025
National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania.
Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, China.
The two-dimensional (2D) "sandwich" structure composed of a cation plane located between two anion planes, such as anion-rich CrI, VS, VSe, and MnSe, possesses exotic magnetic and electronic structural properties and is expected to be a typical base for next-generation microelectronic, magnetic, and spintronic devices. However, only a few 2D anion-rich "sandwich" materials have been experimentally discovered and fabricated, as they are vastly limited by their conventional stoichiometric ratios and structural stability under ambient conditions. Here, we report a 2D anion-rich NaCl crystal with sandwiched structure confined within graphene oxide membranes with positive surface potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!