Optimisation of Using Low-Grade Kaolinitic Clays in Limestone Calcined Clay Cement Production (LC3).

Materials (Basel)

Instituto Universitario de Investigación de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain.

Published: January 2025

LC3 (limestone calcined clay cement) is poised to become the construction industry's future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin. This study begins with a physico-chemical characterisation of the starting materials. This is followed by a microstructural analysis of cement pastes, which includes isothermal calorimetry, thermogravimetry, and X-ray diffraction tests at different curing ages. Finally, this study analyses the mechanical performance of standard mortars under compression to observe the evolution of the control mortars and the mortars with calcined clay and metakaolin over time. The results show that the LC3 mortars exhibited higher compressive strength in the mixtures with higher calcined kaolinite contents, achieved by adding metakaolin. Adding 6% metakaolin increased the compressive strength after 90 days, while 10% additions surpassed the control mortar's compressive strength after 28 days. Mortars with 15% metakaolin exceeded the control mortar's compressive strength after just 7 curing days. The hydration kinetics showed an acceleration of LC3 hydration with metakaolin additions due to the nucleation effect and the formation of monocarboaluminate and hemicarboaluminate (both AFm phases). The results suggest the potential for combining less reactive materials blended with highly reactive materials.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18020285DOI Listing

Publication Analysis

Top Keywords

compressive strength
16
calcined clay
12
limestone calcined
8
clay cement
8
kaolinite content
8
mechanical performance
8
clay metakaolin
8
adding metakaolin
8
strength days
8
control mortar's
8

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.

View Article and Find Full Text PDF

HIV-related mortality has fallen due to scale-up of antiretroviral therapy (ART), so more women living with HIV (WLH) now live to reach menopause. Menopausal estrogen loss causes bone loss, as do HIV and certain ART regimens. However, quantitative bone data from WLH are few in Africa.

View Article and Find Full Text PDF

Pumice aggregates with low density and high porosity are widely used in lightweight concrete. The high water retention ability of pumice aggregates adversely affects the properties of fresh concrete. Additionally, pumice aggregates' inadequate mechanical strength and durability hinder concrete performance.

View Article and Find Full Text PDF

Plug and abandonment of offshore oil wells is a costly and time-consuming process, yet it is necessary for the ever-increasing number of mature fields in the region of the Danish North Sea, as well as globally. Current practices ensuring durable solutions for the complete zonal isolation of oil wells have a large environmental impact. This paper proposes a novel resin that could be mixed on the platform and pumped into the tubing in a liquid state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!