(FeCoNi)A high-entropy alloy (HEA) is a new material with a strength similar to that of commercial Q235 structural steel, and its elongation is nearly three times greater than that of Q235 steel. Studying the welding process of the (FeCoNi)Al HEA and Q235 steel is expected to further expand the application range of commercial Q235 structural steel and provide a foundation for the engineering application of the (FeCoNi)Al HEA. This study focuses on the dissimilar welded components of (FeCoNi)Al HEA and Q235 steel and analyzes the forming quality, microstructure, and mechanical properties of dissimilar welded samples under different currents. The results show that when the welding current is above 170 A, the 3 mm sheet metal is completely penetrated, and a well-formed weld seam is obtained. The base metal of the (FeCoNi)Al HEA has an FCC structure, whereas the fusion zone of the weld seam is almost entirely a BCC structure. The microstructure of the weld seam exhibits needle-like and block-like grains that are different from those of the base metal. Owing to the difference in microstructure between the weld seam and the base metal, the average microhardness of the welded joint is twice that of the base metal. The strength of the dissimilar welded components reached 460 MPa, maintaining the tensile strength of the (FeCoNi)Al HEA, which is similar to that of the Q235 structural steel. The elongation reached over 30%, which was significantly greater than that of the Q235 structural steel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18020280 | DOI Listing |
Materials (Basel)
January 2025
Key Laboratory of Automobile Materials, School of Materials Science and Engineering, Jilin University, Changchun 130025, China.
(FeCoNi)A high-entropy alloy (HEA) is a new material with a strength similar to that of commercial Q235 structural steel, and its elongation is nearly three times greater than that of Q235 steel. Studying the welding process of the (FeCoNi)Al HEA and Q235 steel is expected to further expand the application range of commercial Q235 structural steel and provide a foundation for the engineering application of the (FeCoNi)Al HEA. This study focuses on the dissimilar welded components of (FeCoNi)Al HEA and Q235 steel and analyzes the forming quality, microstructure, and mechanical properties of dissimilar welded samples under different currents.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
In this study, FeCoNiCrSi (x = 0, 4, and 8) powders were successfully prepared using the aerosol method and employed to produce high-entropy coatings on Q235 steel via laser cladding. The microstructure and phase composition of the coatings were analyzed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Corrosion resistance and potential were evaluated through electrochemical analysis and Kelvin probe force microscopy.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Microorganisms that exist in the seawater form microbial biofilms on materials used in marine construction, especially on metal surfaces submerged in seawater, where they form biofilms and cause severe corrosion. Biofilms are mainly composed of bacteria and their secreted polymeric substances. In order to understand how biofilms promote metal corrosion, planktonic and biofilm cells of SY-1 () from Q235 steel were collected and analyzed as to their intracellular proteome and extracellular polymeric substances (EPS).
View Article and Find Full Text PDFSci Rep
October 2024
School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China.
Sci Rep
September 2024
The Zhejiang Provincial Key Lab of Fluid Transmission Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Aiming at the requirements of strong mobility and high flexibility of rescue and relief mobile pump trucks, this paper designs a new type of mobile pump truck frame based on existing mobile vehicle frame models. The materials used for the frame are 40Cr and Q235, and the finite element method is utilized to carry out static mechanical analysis and dynamic characteristic analysis. Simultaneously utilizing topology optimization and multi-objective genetic algorithm to optimize the design of the frame structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!