An experimental investigation is conducted to identify the optimal blend of fluoroethylene carbonate (FEC), 3,3,3-trifluoropropylene carbonate (TFEC), and various fluorinated ethers, including 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (HFE), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), and bis(2,2,2-trifluoroethyl) ether (BTE), to enhance the performances of lithium-ion cells at high voltage. The cell incorporating TTE exhibits a significantly superior capacity for retention after long-term cycling at 4.5 V, which might be attributed to the improved kinetics of lithium ions and the generation of a thin, reliable, and inorganic-rich electrode-electrolyte interface. This enhancement facilitates greater lithium ion mobility within the cell, while effectively suppressing active lithium loss and side reactions between the electrodes and electrolytes at elevated voltages. Furthermore, the cell with TTE demonstrates a superior rate capability and high-temperature performance. As a result of the inherent safety characteristics of these all-fluorinated electrolytes, cells using these formulations show excellent safety properties under typical abuse scenarios. Except at elevated temperatures, none of the cells undergo thermal runaway when subjected to mechanical or electrical abuse, and there are minimal differences in safety performance across the different formulations. Considering electrochemical performance, safety, and cost factors, it can be concluded that TTE might be more optimal to cooperate with FEC and TFEC for high-performance high-voltage cells.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18020274DOI Listing

Publication Analysis

Top Keywords

optimal blend
8
lithium-ion cells
8
cells high
8
high voltage
8
cells
5
blend fluorinated
4
fluorinated esters
4
esters fluorinated
4
ether
4
fluorinated ether
4

Similar Publications

Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility.

View Article and Find Full Text PDF

/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.

View Article and Find Full Text PDF

Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.

View Article and Find Full Text PDF

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!