Friction stir welding (FSW) is a solid-state welding process that uses a rotating tool to soften and stir the base metal, thereby joining it. A special type of tool that has attracted the interest of researchers is the so-called bobbin tool (BTFSW), which, unlike conventional tools with one shoulder, features two shoulders that envelop the base metal from both the top and bottom sides. As a result, significant tensile stresses develop on both sides of the weld, caused by the action of both tool shoulders. In this paper, this issue was addressed by applying laser shock peening (LSP), aiming to introduce compressive stresses, which can be useful as a post-processing technique for BTFSW on both weld sides. It was found that this process completely alters residual stresses in the treated area, from tensile to compressive, through shock waves that impart plastic deformation in the surface layer. It was shown that the LSP effect is more pronounced as the accumulated energy is higher. As a consequence, the microhardness values were significantly increased in the surface and subsurface layers, reaching a maximum depth of 480 to 780 µm for the lowest and highest accumulated laser energy, respectively, while surface roughness increased. While increasing compressive stresses and microhardness in the surface layer is beneficial from the point of view of fatigue resistance, increased roughness has a detrimental effect. Accumulated energy was hereby shown to have a higher effect compared to the maximal energy applied to the specimens.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18020247DOI Listing

Publication Analysis

Top Keywords

laser shock
8
shock peening
8
bobbin tool
8
base metal
8
compressive stresses
8
surface layer
8
accumulated energy
8
energy higher
8
tool
5
influence laser
4

Similar Publications

Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.

View Article and Find Full Text PDF

Knee osteoarthritis (OA) is the most prevalent form of osteoarthritis and a leading cause of chronic pain in adults. This study aimed to compare the short-term effects of extracorporeal shock wave therapy (ESWT), low-level laser therapy (LLLT), and pulsed electromagnetic field therapy (PEMF) on pain, function, and quality of life in patients with knee OA. A hundred and twenty patients with Kellgren-Lawrence grade 2-3 knee OA were randomized into four groups: ESWT (once a week for three sessions), LLLT (twice a week for eight sessions), PEMF (twice a week for eight sessions), and a control group with 30 patients in each group.

View Article and Find Full Text PDF

Endoscopic Management of Benign Pancreaticobiliary Disorders.

J Clin Med

January 2025

Division of Gastroenterology and Hepatology, Center for Digestive Health, Virginia Mason, Franciscan Health, Seattle, WA 98101, USA.

Endoscopic management of benign pancreaticobiliary disorders encompasses a range of procedures designed to address complications in gallstone disease, choledocholithiasis, and pancreatic disorders. Acute cholecystitis is typically treated with cholecystectomy or percutaneous drainage (PT-GBD), but for high-risk or future surgical candidates, alternative decompression methods, such as endoscopic transpapillary gallbladder drainage (ETP-GBD), and endoscopic ultrasound (EUS)-guided gallbladder drainage (EUS-GBD), are effective. PT-GBD is associated with significant discomfort as well as variable adverse event rates.

View Article and Find Full Text PDF

Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear industry. DSCs were exposed to a chloride-rich environment during storage, creating CISCC precursors.

View Article and Find Full Text PDF

Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to laser shock peening with varying laser power levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!