This study investigates the quality characteristics and healing performance of precast concrete incorporating self-healing technology, with the aim of supporting smart city implementation. To enhance the self-healing capabilities of concrete, hybrid self-healing capsules, combining solid capsules and liquid capsules, were utilized, and their applicability and practicality were assessed. The findings revealed that incorporating hybrid self-healing capsules into precast concrete resulted in a reduction in slump by up to 14% and air content by up to 9%. Furthermore, the addition of hybrid capsules led to a maximum reduction in compressive strength of 16% and flexural strength of 18% at 28 days, while demonstrating an increase in healing efficiency as the capsule content increased. The results also indicated that the use of hybrid capsules enhanced the healing efficiency by approximately 16%, 25%, and 32% for mixing ratios of 1%, 3%, and 5%, respectively, with the overall healing efficiency ranging between 75% and 90%. Additionally, the interaction between the hybrid capsules and natural healing mechanisms promoted crystal formation around cracks, thereby significantly improving the long-term durability of the concrete.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18020220 | DOI Listing |
Materials (Basel)
January 2025
Division of Smart Construction and Environmental Engineering, Daejin University, Pocheon 11159, Republic of Korea.
This study investigates the quality characteristics and healing performance of precast concrete incorporating self-healing technology, with the aim of supporting smart city implementation. To enhance the self-healing capabilities of concrete, hybrid self-healing capsules, combining solid capsules and liquid capsules, were utilized, and their applicability and practicality were assessed. The findings revealed that incorporating hybrid self-healing capsules into precast concrete resulted in a reduction in slump by up to 14% and air content by up to 9%.
View Article and Find Full Text PDFTomography
December 2024
Department of Computer Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Türkiye.
Unlabelled: Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing.
Background/objectives: The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to be treated before it develops further. The aim of this study was to classify lumbar disc herniations in a computer-aided, fully automated manner using magnetic resonance images (MRIs).
MethodsX
June 2025
Assistant Professor, Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Tamil Nadu, 600062, India.
Glaucoma, a severe eye disease leading to irreversible vision loss if untreated, remains a significant challenge in healthcare due to the complexity of its detection. Traditional methods rely on clinical examinations of fundus images, assessing features like optic cup and disc sizes, rim thickness, and other ocular deformities. Recent advancements in artificial intelligence have introduced new opportunities for enhancing glaucoma detection.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.
Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.
View Article and Find Full Text PDFMolecules
December 2024
Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland.
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!