Habitat fragmentation and land use changes threaten neotropical habitats and alter patterns of diversity at forest edges. Like other arthropod assemblages, neotropical fruit-feeding butterfly communities show strong vertical stratification within forests, with some recent work showing its potential role in speciation. At forest edges, species considered to be forest canopy specialists have been observed descending to the forest understory, with the similarity in light conditions between the canopy and understory strata at edges hypothesized to be responsible for this phenomenon. We conducted a study using standardized sampling to document and quantify this edge effect, characterize edge and forest strata, and estimate the relative contributions of temperature and light conditions to changes in nymphalid butterfly stratification at forest edges. We found strong evidence of an edge effect in these butterflies and confirmed strong differences in light and temperature, showing that the edge understory differs little from forest canopy conditions. Of 41 species common to both forests and edges, 28 shifted to have a lower canopy probability at the edge, and our model detected a decrease in canopy probability of 0.165. Furthermore, our analysis indicated the relative abundance of canopy taxa increased at the edge, and the tribes Haeterini and Morphini were especially sensitive to edge effects. However, the analyses here did not clearly implicate temperature or light magnitude in causing changes in neotropical nymphalid vertical stratification at forest edges. Instead, our results point to other mediator variables as being important for changes at tropical forest edges. From our data, edge-responsive species can be separated into two different categories, which likely relates to their resilience to anthropogenic disturbance. We also note that structural causal models have a potential place in future work on tropical conservation, given they can provide causal estimates with observational data.

Download full-text PDF

Source
http://dx.doi.org/10.3390/insects16010064DOI Listing

Publication Analysis

Top Keywords

forest edges
24
vertical stratification
12
forest
10
neotropical nymphalid
8
edges
8
light temperature
8
forest canopy
8
light conditions
8
temperature light
8
stratification forest
8

Similar Publications

Small forest patches and landscape-scale fragmentation exacerbate forest fire prevalence in Amazonia.

J Environ Manage

January 2025

School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK; Instituto Juruá, Manaus, Brazil.

Over recent decades, forest fire prevalence has increased throughout the tropics, necessitating improved understanding of the landscape-scale drivers of fire occurrence. Here, we use MapBiomas land-cover and fire scar data to evaluate relationships between forest fragmentation, land-use, and forest fire prevalence in a typically consolidated Amazonian agricultural frontier: Portal da Amazonia, Mato Grosso, Brazil. Using zero-/zero-one-inflated Beta regressions, we investigate effects of forest patch (area, shape, surrounding forest cover) and landscape-scale variables (forest edge length, land-cover composition) on forest fire occurrence and density between 1985 and 2021.

View Article and Find Full Text PDF

Habitat fragmentation and land use changes threaten neotropical habitats and alter patterns of diversity at forest edges. Like other arthropod assemblages, neotropical fruit-feeding butterfly communities show strong vertical stratification within forests, with some recent work showing its potential role in speciation. At forest edges, species considered to be forest canopy specialists have been observed descending to the forest understory, with the similarity in light conditions between the canopy and understory strata at edges hypothesized to be responsible for this phenomenon.

View Article and Find Full Text PDF

Background: Ticks are the primary vectors of numerous zoonotic pathogens, transmitting more pathogens than any other blood-feeding arthropod. In the northern hemisphere, tick-borne disease cases in humans, such as Lyme borreliosis and tick-borne encephalitis, have risen in recent years, and are a significant burden on public healthcare systems. The spread of these diseases is further reinforced by climate change, which leads to expanding tick habitats.

View Article and Find Full Text PDF

LMSST-GCN: Longitudinal MRI sub-structural texture guided graph convolution network for improved progression prediction of knee osteoarthritis.

Comput Methods Programs Biomed

January 2025

School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China; Pazhou Lab, Guangzhou 510330, China. Electronic address:

Background And Objectives: Accurate prediction of progression in knee osteoarthritis (KOA) is significant for early personalized intervention. Previous methods commonly focused on quantifying features from a specific sub-structure imaged at baseline and resulted in limited performance. We proposed a longitudinal MRI sub-structural texture-guided graph convolution network (LMSST-GCN) for improved KOA progression prediction.

View Article and Find Full Text PDF

Towards repeated clear-cutting of boreal forests - a tipping point for biodiversity?

Biol Rev Camb Philos Soc

January 2025

Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway.

Boreal forests are important carbon sinks and host a diverse array of species that provide important ecosystem functions. Boreal forests have a long history of intensive forestry, in which even-aged management with clear-cutting has been the dominant harvesting practice for the past 50-80 years. As a second cycle of clear-cutting is emerging, there is an urgent need to examine the effects of repeated clear-cutting events on biodiversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!