Influences of Rearing Season, Host Plant, and Silkworm Species on Gut Bacterial Community.

Insects

College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.

Published: January 2025

The gut bacterial community plays many important roles in the production of nutrients and digestion. and (Lepidoptera: Saturniidae) are two traditional sources of human food, as well as being silk-producing insects. In the present study, the influences of rearing season (spring and autumn), silkworm species ( and ), and host plant ( and ) on gut microbiota diversity were tested using Illumina MiSeq technology. We found that the bacterial composition and diversity of larvae reared in the autumn are elevated compared to those of larvae from the spring. Silkworm species played an important role in the gut bacterial community. Host plants also affected the diversity of the intestinal flora of the insects: the diversity of the intestinal flora of reared using was higher than those reared using . Our findings provide insights into the gut microbial environment in edible insects.

Download full-text PDF

Source
http://dx.doi.org/10.3390/insects16010047DOI Listing

Publication Analysis

Top Keywords

silkworm species
12
gut bacterial
12
bacterial community
12
influences rearing
8
rearing season
8
host plant
8
diversity intestinal
8
intestinal flora
8
gut
5
season host
4

Similar Publications

The gut bacterial community plays many important roles in the production of nutrients and digestion. and (Lepidoptera: Saturniidae) are two traditional sources of human food, as well as being silk-producing insects. In the present study, the influences of rearing season (spring and autumn), silkworm species ( and ), and host plant ( and ) on gut microbiota diversity were tested using Illumina MiSeq technology.

View Article and Find Full Text PDF

Resveratrol Alleviates NEFA-Induced Oxidative Damage in Bovine Mammary Epithelial Cells by Restoring Mitochondrial Function.

Animals (Basel)

January 2025

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

In periparturient dairy cows, high non-esterified fatty acids (NEFAs) caused by a severe negative energy balance induce oxidative stress and metabolic dysfunction, which pose a severe challenge to the dairy industry. Resveratrol (RES) is a polyphenolic compound with antioxidant, anti-inflammatory and multiple other physiological effects. However, its effect on oxidative damage triggered by NEFAs in bovine mammary epithelial cells is rarely reported.

View Article and Find Full Text PDF

Comprehensive genome annotation of Trilocha varians, a new model species of Lepidopteran insects.

Sci Data

January 2025

Gakushuin University, Faculty of Science, Department of Life Science, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan.

Trilocha varians is a member of the bombycid moths. Since T. varians has a considerably shorter generation period than the prevailing model species, Bombyx mori, this species would be a novel model insect in Lepidoptera.

View Article and Find Full Text PDF

Insects are used as an alternative sustainable, protein-rich ingredient in fish, pet, pig and poultry diets. The significant difference between insect meals and common protein sources is the content of chitin. The nitrogen contained in chitin, which makes up 6.

View Article and Find Full Text PDF

The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, larva and pupa, on beneficial gut microbiota growth, using whole 16s metagenome sequencing to assess diet-associated changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!