Curcumin, a compound known for its antioxidant and neuroprotective properties, faces challenges due to its low water solubility, which can limit its effectiveness. One effective method to address this issue is through amorphization. Incorporating curcumin into a polymeric matrix to form amorphous solid dispersions is a common approach. Another strategy involves co-amorphous systems, where low-molecular-weight components act as co-formers. A recent innovative approach combines these strategies. This study used tryptophan as a co-former and prepared systems using supercritical fluid technology. The amorphous nature of two systems was confirmed through X-ray powder diffraction: one with 10% curcumin and a polymer, and another with 10% curcumin, a polymer, and tryptophan. Fourier-transform infrared analysis demonstrated molecular interactions among all components in the systems. Scanning electron microscopy revealed that the amorphization process significantly modified the morphology of the powder particles. The ternary system with tryptophan notably increased curcumin solubility by over 300-fold. The amorphous form of curcumin in both systems exhibited significantly higher dissolution rates compared to its crystalline form. The system with tryptophan showed more than a threefold improvement in permeability according to the PAMPA test. The enhanced solubility led to over a sixfold increase in antioxidant activity and a 25-fold improvement in the inhibition of the enzyme butyrylcholinesterase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26020855 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!