Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from PCC 7942 and PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in using a dual-plasmid co-expression system and characterized in both oxidized and reduced states. X-ray crystallography revealed three distinct crystal forms, with asymmetric units containing 2, 4, or 12 molecules, all of which consist of repeating dimeric structures. Structural comparisons across species indicated that dimerization predominantly occurs through hydrophobic interactions within a conserved motif around the heme crevice, despite notable variations in dimer positioning. We propose that the dimerization of Cyt c6 enhances structural stability, optimizes electron transfer kinetics, and protects the protein from oxidative damage. Furthermore, we used AlphaFold3 to predict the structure of the PSI-Cyt c6 complex, revealing specific interactions that may facilitate efficient electron transfer. These findings provide new insights into the functional role of Cyt c6 dimerization and its contribution to improving cyanobacterial photosynthetic electron transport.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26020824DOI Listing

Publication Analysis

Top Keywords

electron transfer
16
electron
5
cyt
5
high-resolution crystallographic
4
crystallographic study
4
study cytochrome
4
cytochrome structural
4
structural basis
4
basis electron
4
transfer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!