To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+). Single-cell transcriptomic studies, functional clustering, and developmental trajectory analyses were performed. A significant increase in multipotent progenitor 2A (MPP2A) cluster is found in the early HSC trajectory in old human subjects. This cluster is enriched in senescence signatures (increased telomere attrition, DNA damage, activation of P53 pathway). In mouse models, the accumulation of an analogous subset was confirmed in the aged LT-HSC population. Elimination of this subset has been shown to rejuvenate hematopoiesis in mice. A significant activation of the P53-P21WAF1/CIP1 pathway was found in the MPP2A population in humans. In contrast, the senescent HSCs in mice are characterized by activation of the p16Ink4a pathway. Aging in the human HSC compartment is mainly caused by the clonal evolution and accumulation of a senescent cell cluster. A population with a similar senescence signature in the aged LT-HSCs was confirmed in the murine aging model. Clearance of this senescent population with senotherapy in humans is feasible and potentially beneficial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26020787 | DOI Listing |
Nat Commun
January 2025
Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.
View Article and Find Full Text PDFClin Lymphoma Myeloma Leuk
January 2025
Divisions of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
Background: Myelodysplastic syndromes/neoplasms (MDS) are a diverse group of clonal myeloid disorders. Advances in molecular technology lead to the development of new classification systems. However, large-scale epidemiological studies on MDS in Asian countries are currently scarce.
View Article and Find Full Text PDFJ Infect Chemother
January 2025
Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; Division of Immunology, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
Cytomegalovirus (CMV) infection remains one of the most common and challenging post-transplant infections. Children with inborn errors of immunity (IEI) and T-cell dysfunction are at high risk for CMV infection, which can be complicated by refractory and/or resistant cases. This case describes a Nepalese girl with MHC class II deficiency, who presented at 3 months of age with CMV and Pneumocystis jirovecii pneumonia.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
Unrelated bone marrow transplantation (BMT) is a curative treatment for hematological malignancies. While HLA mismatch is a recognized risk factor in unrelated BMT, the significance of non-HLA single nucleotide polymorphisms (SNPs) remains uncertain. Cytokines play key roles in several aspects of unrelated BMT.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medicine V, Heidelberg University, 69117 Heidelberg, Germany.
To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!