Cadmium (Cd) is a pervasive heavy metal pollutant released into the environment through industrial activities such as mining, smelting, and agricultural runoff. This study aimed to investigate the molecular and metabolic impacts of Cd exposure on the silk glands of , a species renowned for producing silk with exceptional mechanical properties. Cd accumulation in spider bodies and silk glands was significantly higher in the low- and high-Cd groups compared to controls, with a dose- and time-dependent increase. Oxidative stress markers, including superoxide dismutase, glutathione peroxidase, peroxidase, and malondialdehyde, were significantly elevated, indicating a robust stress response. Proteomic analysis identified 2498 proteins, with 227 differentially expressed between Cd-treated and control groups. Key metabolic pathways, including glutathione metabolism, cysteine and methionine metabolism, and amino acid biosynthesis, were significantly disrupted. Downregulation of enzymes such as glutathione synthase and S-adenosylmethionine synthetase highlighted oxidative imbalance and impaired sulfur metabolism, indicating disruptions in redox homeostasis and energy metabolism critical for silk production. These findings demonstrate that Cd exposure alters oxidative stress responses, disrupts key metabolic pathways, and impairs silk gland functionality at multiple molecular levels. This study advances the understanding of the impact of heavy metal stress on spider physiology and provides a foundation for further research on the ecological implications of Cd contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26020754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!