Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies. The model was built using ceramides in extended conformation as the backbone along with free fatty acids and cholesterol. The properties of the equilibrated model were in agreement with the neutron scattering data and hydration behavior previously reported in the literature. The permeability of molecules, such as water, benzene and estradiol, and the molecular mechanism of action of permeation enhancers, such as eucalyptol and limonene, were evaluated using the model. The new model can be reliably used for studying the permeation of small molecules and for gaining mechanistic insights into the action of permeation enhancers.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26020674DOI Listing

Publication Analysis

Top Keywords

stratum corneum
12
atomistic model
8
lipid matrix
8
permeation studies
8
action permeation
8
permeation enhancers
8
permeation
7
model
6
establishing general
4
general atomistic
4

Similar Publications

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.

View Article and Find Full Text PDF

Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the barrier.

View Article and Find Full Text PDF

Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies.

View Article and Find Full Text PDF

Peptides: Emerging Candidates for the Prevention and Treatment of Skin Senescence: A Review.

Biomolecules

January 2025

Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania.

One class of cosmetic compounds that have raised interest of many experts is peptides. The search for ingredients with good biocompatibility and bioactivity has led to the use of peptides in cosmetic products. Peptides are novel active ingredients that improve collagen synthesis, enhance skin cell proliferation, or decrease inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!