Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Species.

Int J Mol Sci

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Published: January 2025

Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. , a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites. In this study, we characterize a novel method of plasmid transfer, termed Cell-to-Cell Natural Transformation for Plasmid Transfer (CTCNT-P), which efficiently facilitates plasmid transfer between naturally competent strains. This method involves co-culturing donor and recipient cells under antibiotic stress and achieves significantly higher efficiency compared to traditional methods such as Spizizen medium or electroporation-mediated transformation. Importantly, we demonstrate that CTCNT-P is applicable for plasmid transformation in wild isolates from natural environments and other species, including , , and . The simplicity and efficiency of CTCNT-P highlight its strong potential for industrial applications, including genetic modification of wild strains for synthetic biology and the development of biocontrol agents.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26020621DOI Listing

Publication Analysis

Top Keywords

plasmid transfer
16
natural transformation
12
cell-to-cell natural
8
industrial applications
8
transformation
5
plasmid
5
transfer
5
transformation mediated
4
mediated efficient
4
efficient plasmid
4

Similar Publications

Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.

View Article and Find Full Text PDF

Genetic and species rearrangements in microbial consortia impact biodegradation potential.

ISME J

January 2025

Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain.

Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs.

View Article and Find Full Text PDF

Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from PCC 7942 and PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in using a dual-plasmid co-expression system and characterized in both oxidized and reduced states.

View Article and Find Full Text PDF

Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Species.

Int J Mol Sci

January 2025

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. , a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites.

View Article and Find Full Text PDF

Bile salt hydrolase (BSH), a probiotic-related enzyme with cholesterol-assimilating and anti-hypercholesterolemic abilities, has been isolated from intestinal bacteria; however, BSH activity of bacteria in bile-salt-free (non-intestinal) environments is largely unknown. Here, we aimed to identify BSH from non-intestinal and characterize its enzymatic function. We successfully isolated a plasmid-encoded () from , and the recombinant EfpBSH showed BSH activity that preferentially hydrolyzed taurine-conjugated bile salts, unlike the activity of known BSHs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!