Localization and Molecular Cloning of the Gene for Melatonin Synthesis in Pigs.

Int J Mol Sci

State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Published: January 2025

Melatonin is synthesized in multiple tissues and organs of pigs, and existing studies have shown the presence of the melatonin-synthesizing enzyme ASMT protein. However, the genomic information for the gene has been lacking. The aim of this study was to locate the genomic information of the gene in pigs using comparative genomics analysis and then obtain the coding region information through molecular cloning. First, using the NCBI Genome Data Viewer, we found that in most animals, the gene is often located next to the gene, with both genes arranged in the same direction. Similarly, the gene is commonly adjacent to the gene, also in the same orientation. We also discovered that the gene is frequently adjacent to the ASMT gene and arranged in the opposite direction. Using the "three-point localization" principle, we inferred the position of the gene based on the coordinates of and in pigs. Our results revealed that on the pig X chromosome, a gene called LOC110258194 is located next to the and genes, and its arrangement aligns with the gene in other species. Additionally, Ensembl contains a gene, ENSSSCG00000032659, at the same position, with completely overlapping exons, though it is not annotated as . Further analysis using the TreeFam tool from EMBL-EBI and the CDD tool from NCBI revealed that LOC110258194 and ENSSSCG00000032659 do not contain the typical Maf domain of and, thus, should not be annotated as , but rather as the gene. Using a slow-down PCR method for high-GC content genes, we successfully cloned the full CDS region of the pig gene and identified a new transcript missing Exon 6 and Exon 7. This transcript was submitted to NCBI and assigned the GenBank accession number MW847601. Our results represent the first successful localization of the gene in pigs, the first cloning of the gene's coding region, and the first discovery of a new transcript of the pig gene.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26020606DOI Listing

Publication Analysis

Top Keywords

gene
17
molecular cloning
8
genomic gene
8
gene pigs
8
coding region
8
pig gene
8
pigs
5
localization molecular
4
cloning gene
4
gene melatonin
4

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!