Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances. We analyzed the yields of different radicals as compared to the non-interacting track conditions and we evaluated the difference. We find a negligible role of intertrack for spatial distances larger than 1 μm, while for temporal distances up to μs, a non-negligible interaction is observed especially at higher LET. In addition, we emphasize the non-monotonic behavior of some relative yield as a function of the time separation, in particular of H2O2, due to the onset of a different reaction involving solvated electrons besides well-known OH· recombination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26020571 | DOI Listing |
Int J Mol Sci
January 2025
Trento Institute for Fundamental Physics and Application, TIFPA, 38123 Povo, Italy.
Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances.
View Article and Find Full Text PDFRadiat Res
December 2024
Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231.
Dose rate is one of the important parameters in radiation-induced biomolecular damage. The effects of dose rate have been known to modify radiation toxicity in biological systems. The rate and extent of sublethal DNA damage (e.
View Article and Find Full Text PDFRadiat Environ Biophys
April 2009
Physics Engineering Department, Faculty of Engineering, Hacettepe University, Ankara, Turkey.
In the present work, spectroscopic, kinetic and dosimetric features of the radicalic intermediates produced after gamma irradiation at room temperature of solid triclosan (2,4,4-trichloro-2-hydroxydiphenyl ether; TCS) were investigated by means of electron spin resonance spectroscopy (ESR) at various temperatures. The same material was also irradiated with UV light, and an ESR spectrum very similar to that obtained for gamma-irradiated TCS, was recorded. The ESR spectrum of TCS is characterized by an unresolved doublet with resonance lines split into other doublets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!