In recent decades, the scientific community has faced a major challenge in the search for new therapies that can slow down or alleviate the process of neuronal death that accompanies neurodegenerative diseases. This study aimed to identify an effective therapy using neurotrophic factors to delay the rapid and aggressive cerebellar degeneration experienced by the Purkinje Cell Degeneration (PCD) mouse, a model of childhood-onset neurodegeneration with cerebellar atrophy (CONDCA). Initially, we analyzed the changes in the expression of several neurotrophic factors related to the degenerative process itself, identifying changes in insulin-like growth factor 1 (IGF-1) and Vascular Endothelial Growth Factor B (VEGF-B) in the affected animals. Then, we administered pharmacological treatments using human recombinant IGF-1 (rhIGF-1) or VEGF-B (rhVEGF-B) proteins, considering their temporal variations during the degenerative process. The effects of these treatments on motor, cognitive, and social behavior, as well as on cerebellar destructuration were analyzed. Whereas treatment with rhIGF-1 did not demonstrate any neuroprotective effect, rhVEGF-B administration at moderate dosages stopped the process of neuronal death and restored motor, cognitive, and social functions altered in PCD mice (and CONDCA patients). However, increasing the frequency of rhVEGF-B administration had a detrimental effect on Purkinje cell survival, suggesting an inverted U-shaped dose-response curve of this substance. Additionally, we demonstrate that this neuroprotective effect was achieved through a partial inhibition or delay of apoptosis. These findings provide strong evidence supporting the use of rhVEGF-B as a pharmacological agent to limit severe cerebellar neurodegenerative processes.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26020538DOI Listing

Publication Analysis

Top Keywords

process neuronal
8
neuronal death
8
neurotrophic factors
8
purkinje cell
8
degenerative process
8
growth factor
8
motor cognitive
8
cognitive social
8
demonstrate neuroprotective
8
rhvegf-b administration
8

Similar Publications

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

People with amblyopia show deficits in global motion perception, especially at slow speeds. These observers are also known to have unstable fixation when viewing stationary fixation targets, relative to healthy controls. It is possible that poor fixation stability during motion viewing interferes with the fidelity of the input to motion-sensitive neurons in visual cortex.

View Article and Find Full Text PDF

Establishing functionally segregated dopaminergic circuits.

Trends Neurosci

January 2025

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways.

View Article and Find Full Text PDF

The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.

View Article and Find Full Text PDF

Mitochondrial fission and fusion in neurodegenerative diseases:Ca signalling.

Mol Cell Neurosci

January 2025

Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China. Electronic address:

Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca signaling have long been considered to play important roles in the development of various NDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!