Differential Activity and Expression of Proteasome in Seminiferous Epithelium During Mouse Spermatogenesis.

Int J Mol Sci

Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile.

Published: January 2025

Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function. Specifically, we assessed the trypsin-like, chymotrypsin-like, and peptidyl-glutamyl-peptide-hydrolyzing (PGPH) activities of the proteasome. Additionally, we examined the expression of catalytic and structural subunits of the 20S core, the assembly of the 20S core with regulatory complexes, and the phosphorylation status of proteasome subunits in various segments of the seminiferous tubules. Our findings demonstrated distinct patterns of proteasomal enzymatic activity in the analyzed segments. While the expression levels of structural and catalytic subunits of the 20S core remained consistent, significant differences were detected in the assembly of the 20S core, the expression of regulatory complexes, and the phosphorylation of proteasome subunits mediated by protein kinase A. These results indicate that proteasomal activity is finely regulated through multiple mechanisms depending on the specific stage of the seminiferous epithelial cycle, highlighting the complexity of proteostasis during spermatogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26020494DOI Listing

Publication Analysis

Top Keywords

20s core
16
enzymatic activity
8
seminiferous tubules
8
subunits 20s
8
assembly 20s
8
regulatory complexes
8
complexes phosphorylation
8
proteasome subunits
8
proteasome
5
differential activity
4

Similar Publications

Differential Activity and Expression of Proteasome in Seminiferous Epithelium During Mouse Spermatogenesis.

Int J Mol Sci

January 2025

Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile.

Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function.

View Article and Find Full Text PDF

To direct regulated protein degradation, the 26S proteasome recognizes ubiquitinated substrates through its 19S particle and then degrades them in the 20S enzymatic core. Despite this close interdependency between proteasome subunits, we demonstrate that knockouts from different proteasome subcomplexes result in distinct highly cellular phenotypes. In particular, depletion of 19S PSMD lid proteins, but not that of other proteasome subunits, prevents bipolar spindle assembly during mitosis, resulting in a mitotic arrest.

View Article and Find Full Text PDF

Why cancer cells disproportionately accumulate polyubiquitinated proteotoxic proteins despite high proteasomal activity is an outstanding question. While mis-regulated ubiquitination is a contributing factor, here we show that a structurally-perturbed and sub-optimally functioning proteasome is at the core of altered proteostasis in tumors. By integrating the gene coexpression signatures of proteasomal subunits in breast cancer (BrCa) patient tissues with the atomistic details of 26S holocomplex, we find that the transcriptional deregulation induced-stoichiometric imbalances perpetuate with disease severity.

View Article and Find Full Text PDF

Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits.

View Article and Find Full Text PDF

The 26S proteasome complex is the hub for regulated protein degradation in the cell. It is composed of two biochemically distinct complexes: the 20S core particle with proteolytic active sites in an internal chamber and the 19S regulatory particle, consisting of a lid and base subcomplex. The base contains ubiquitin receptors and an AAA+ (ATPases associated with various cellular activities) motor that unfolds substrates prior to degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!