Alzheimer's disease (AD) remains a leading cause of cognitive decline and mortality worldwide, characterized by neurodegeneration, synaptic deficiencies, and neuroinflammation. Despite advancements in early detection, diagnosis, and treatment, AD presents substantial challenges due to its complex pathology, heterogeneity, and the limited efficacy of current therapies. Consequently, there is a pressing need for novel therapeutic agents to target the multifaceted aspects of AD pathology, enhance current treatments, and minimize adverse effects. AdipoRon, an adiponectin receptor agonist, has garnered interest for its potential neuroprotective effects, including reducing neuroinflammation, improving mitochondrial function, and mitigating tau hyperphosphorylation. This review aimed to evaluate the effects of AdipoRon-based adiponectin replacement therapy against AD, using a comprehensive approach grounded in the PICO framework-Population, Intervention, Comparison, and Outcomes. A total of six studies were reviewed, including in vitro and in vivo investigations examining AdipoRon's impact on various AD models. These studies involved different cell lines and transgenic mouse models, assessing various outcomes such as cognitive function, neuroinflammation, tau phosphorylation, synaptic deficiencies, and relevant molecular pathways. By synthesizing data from these studies, our review thoroughly explains AdipoRon's neuroprotective effects, mechanisms of action, and potential as a therapeutic agent for AD. This analysis aims to highlight the current state of knowledge, identify gaps in the research, and suggest directions for future studies and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26020484DOI Listing

Publication Analysis

Top Keywords

adiporon's impact
8
synaptic deficiencies
8
neuroprotective effects
8
impact alzheimer's
4
alzheimer's disease-a
4
disease-a systematic
4
systematic review
4
review meta-analysis
4
meta-analysis alzheimer's
4
alzheimer's disease
4

Similar Publications

Alzheimer's disease (AD) remains a leading cause of cognitive decline and mortality worldwide, characterized by neurodegeneration, synaptic deficiencies, and neuroinflammation. Despite advancements in early detection, diagnosis, and treatment, AD presents substantial challenges due to its complex pathology, heterogeneity, and the limited efficacy of current therapies. Consequently, there is a pressing need for novel therapeutic agents to target the multifaceted aspects of AD pathology, enhance current treatments, and minimize adverse effects.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a widespread chronic disease characterized by persistent hyperglycemia, leading to severe complications such as diabetic cardiomyopathy and nephropathy, significantly affecting patient health and quality of life. The complex mechanisms underlying these complications include chronic inflammation, oxidative stress, and metabolic dysregulation. Diabetic cardiomyopathy, marked by structural and functional heart abnormalities, and diabetic nephropathy, characterized by progressive kidney damage, are major contributors to the increased morbidity and mortality associated with T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!