The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells. Molecular docking and surface plasmon resonance (SPR) experiments indicated that BIBF specifically binds to the autophagy-associated protein VPS18, interfering with its function and inhibiting the normal progression of autophagy. However, the application of BIBF in GBM therapy is limited due to restricted drug penetration across the BBB. Therefore, this study utilized poly-lactic-co-glycolic acid (PLGA) nanocarriers as a drug delivery system to significantly enhance the delivery efficiency of BIBF in vivo. In vitro cellular experiments and in vivo animal model validation demonstrated that PLGA-BIBF NPs effectively overcame the limitations of the BBB, significantly enhanced the antitumor activity of BIBF, and improved therapeutic efficacy in a GBM BALB/c-Nude model. This study demonstrated that BIBF exerted significant inhibitory effects on GBM cells by binding to VPS18 and inhibiting the autophagy pathway. Combined with the PLGA nanocarrier delivery system, the blood-brain barrier permeability and anti-tumor effect of BIBF were significantly enhanced. Targeting the BIBF-VPS18 pathway and optimizing drug delivery through nanotechnology may represent a new strategy for GBM treatment, providing innovative clinical treatment ideas and a theoretical basis for patients with GBM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26020443 | DOI Listing |
J Prev Alzheimers Dis
February 2025
Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore. Electronic address:
Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.
View Article and Find Full Text PDFAm J Pathol
January 2025
Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea. Electronic address:
Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE.
View Article and Find Full Text PDFLancet Neurol
January 2025
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK. Electronic address:
The blood-brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site are a fundamental parameter for therapeutic effect; thus, the blood-brain barrier is a major obstacle to overcome. Novel strategies have been developed to circumvent the blood-brain barrier, including CSF delivery, intracranial delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics.
View Article and Find Full Text PDFLancet Neurol
January 2025
Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!