AI Article Synopsis

Article Abstract

Insulin-like growth factor-1 (IGF-1) plays a vital role in various cellular processes, including those involving stem cells. This study evaluated the effects of IGF-1 on cell survival, osteogenic differentiation, and mRNA expression in gingiva-derived mesenchymal stem cell spheroids. Using concave microwells, spheroids were generated in the presence of IGF-1 at concentrations of 0, 10, and 100 ng/mL. Cellular vitality was qualitatively assessed using microscopy, while a water-soluble tetrazolium salt-based assay kit quantified cellular viability. Osteogenic differentiation was evaluated via alkaline phosphatase activity and an anthraquinone dye test to measure calcium deposition. Additionally, quantitative polymerase chain reaction (qPCR) analysis was performed to determine the expression of RUNX2 and COL1A1. By day 1, the stem cell spheroids had successfully formed, and their morphology remained stable over the following 7 days. The IGF-1 concentrations tested showed no significant differences in cell viability. Similarly, alkaline phosphatase activity on day 7 revealed no observable changes. However, on day 7, the incorporation of IGF-1 led to an increase in Alizarin Red staining, indicative of enhanced calcium deposition. Notably, an IGF-1 concentration of 100 ng/mL significantly upregulated the expression of COL1A1. These findings suggest that IGF-1 supports the maintenance of cell viability and promotes the expression of COL1A1 in gingiva-derived mesenchymal stem cell spheroids, highlighting its potential role in enhancing osteogenic differentiation. Future research should include long-term studies to evaluate the sustainability of IGF-1-induced effects on stem cell spheroids.

Download full-text PDF

Source
http://dx.doi.org/10.3390/medicina61010076DOI Listing

Publication Analysis

Top Keywords

stem cell
20
cell spheroids
20
osteogenic differentiation
16
cell viability
12
gingiva-derived mesenchymal
12
mesenchymal stem
12
cell
9
insulin-like growth
8
maintenance cell
8
viability osteogenic
8

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Revolutionizing acute myeloid leukemia treatment: a systematic review of immune-based therapies.

Discov Oncol

January 2025

Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.

The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.

View Article and Find Full Text PDF

The causal association between cardiovascular proteins and diabetic nephropathy: a Mendelian randomization study.

Int Urol Nephrol

January 2025

Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.

Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.

Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!