Bioactive compounds and organic acids are applied to a wide range of foods against different types of foodborne pathogens. In the present study, carvacrol and thymol (1000 mg/L) were applied in wine-based marinades, alone or in combination with them and in combination with tartaric acid, malic acid, ascorbic acid, citric acid, and acetic acid (in concentration 0.1% /), in chicken and beef fillets and their antimicrobial activity, antioxidant capacity, and pH were estimated during refrigerated storage. Likewise, their antimicrobial activity was recorded against , total mesophilic bacteria, yeasts/molds, and lactic acid bacteria. The outcome demonstrated that both meats kept under similar storage conditions (4 °C/9 days) exhibited lower microbial growth, particularly with when treated with wine-based carvacrol-thymol marinades and may extend their shelf-life. This antimicrobial action was more pronounced in the beef samples. The total phenolic content (TPC) and the antioxidant activity of the applied marinades were determined using the Folin-Ciocalteau method and ABTS and DPPH radical scavenging activity methods, respectively. The results revealed that marinades with thymol and/or carvacrol in combination with acetic or ascorbic acid had greater TPC and antioxidant activity. The pH values of the respective marinades applied to both chicken and beef fillets exhibited an upturn during storage. Consequently, these marinades, even at low concentrations, could be used as natural preservatives in meat products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms13010182 | DOI Listing |
Microorganisms
January 2025
Laboratory of Microbiology, Biotechnology & Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece.
Bioactive compounds and organic acids are applied to a wide range of foods against different types of foodborne pathogens. In the present study, carvacrol and thymol (1000 mg/L) were applied in wine-based marinades, alone or in combination with them and in combination with tartaric acid, malic acid, ascorbic acid, citric acid, and acetic acid (in concentration 0.1% /), in chicken and beef fillets and their antimicrobial activity, antioxidant capacity, and pH were estimated during refrigerated storage.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
Meat analogs are a burgeoning industry, with plant-based meat analogs, insect-based meat analogs, algae-based meat analogs, mycoprotein-based meat analogs, and cell-based meat analogs. However, despite the industry's growth potential, market expansion faces hurdles due to taste and quality disparities compared to traditional meats. The composition and characteristics of meat analogs currently available in the market are analyzed in this study to inform the development of future products in this sector.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea.
Simulating meat flavor via Maillard reaction model systems that contain a mixture of amino acids and reducing sugars is an effective approach to understanding the reaction mechanism of the flavor precursors. Notably, animal resources such as fish, beef, chicken, pork hydrolysates, and fats are excellent precursors in promoting favorable meaty and roasted flavors and umami tastes of Maillard reaction products. The experimental conditions and related factors of the model systems for sensory enhancements, debittering, and off-flavor reduction with meat and by-products are summarized in this review.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China. Electronic address:
Bacteriophages are promising alternatives for combating multidrug-resistant bacterial infections. Two lytic bacteriophages, named P1 and P3, targeting pathogenic Escherichia coli (ExPEC; strain TZ1_3) were isolated and evaluated for their potential ability to control pathogenic numbers either in ExPEC-contaminated food or ExPEC-infected mice. Results showed that phages significantly reduced ExPEC numbers within 6 and 12 h in contaminated water, milk, beef, and chicken when applied at 10 plaque-forming units (PFU).
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science and Engineering, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
The growth of population and changes in dietary structure have led to a continuous increase in demand for livestock and poultry products, resulting in the increase of the gaseous reactive nitrogen (GNr) emissions from livestock and poultry breeding systems and posing a threat to the human and ecosystem health. The characteristics from GNr emissions of six livestock and poultry breeding systems at the provincial level of China in 2020 were evaluated with the framework of life cycle analysis. Additionally, this study explored the impact of silage maize replacing traditional maize as feed on reducing GNr emissions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!